|
--- |
|
license: other |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-sidewalk-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-sidewalk-2 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2794 |
|
- Mean Iou: 0.0007 |
|
- Mean Accuracy: 0.0333 |
|
- Overall Accuracy: 0.0216 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Flat-road: 0.0 |
|
- Accuracy Flat-sidewalk: 1.0 |
|
- Accuracy Flat-crosswalk: 0.0 |
|
- Accuracy Flat-cyclinglane: 0.0 |
|
- Accuracy Flat-parkingdriveway: nan |
|
- Accuracy Flat-railtrack: 0.0 |
|
- Accuracy Flat-curb: 0.0 |
|
- Accuracy Human-person: 0.0 |
|
- Accuracy Human-rider: 0.0 |
|
- Accuracy Vehicle-car: 0.0 |
|
- Accuracy Vehicle-truck: 0.0 |
|
- Accuracy Vehicle-bus: nan |
|
- Accuracy Vehicle-tramtrain: 0.0 |
|
- Accuracy Vehicle-motorcycle: 0.0 |
|
- Accuracy Vehicle-bicycle: 0.0 |
|
- Accuracy Vehicle-caravan: 0.0 |
|
- Accuracy Vehicle-cartrailer: 0.0 |
|
- Accuracy Construction-building: 0.0 |
|
- Accuracy Construction-door: 0.0 |
|
- Accuracy Construction-wall: 0.0 |
|
- Accuracy Construction-fenceguardrail: 0.0 |
|
- Accuracy Construction-bridge: nan |
|
- Accuracy Construction-tunnel: 0.0 |
|
- Accuracy Construction-stairs: 0.0 |
|
- Accuracy Object-pole: 0.0 |
|
- Accuracy Object-trafficsign: 0.0 |
|
- Accuracy Object-trafficlight: 0.0 |
|
- Accuracy Nature-vegetation: 0.0 |
|
- Accuracy Nature-terrain: 0.0 |
|
- Accuracy Sky: 0.0 |
|
- Accuracy Void-ground: 0.0 |
|
- Accuracy Void-dynamic: 0.0 |
|
- Accuracy Void-static: 0.0 |
|
- Accuracy Void-unclear: nan |
|
- Iou Unlabeled: nan |
|
- Iou Flat-road: 0.0 |
|
- Iou Flat-sidewalk: 0.0216 |
|
- Iou Flat-crosswalk: 0.0 |
|
- Iou Flat-cyclinglane: 0.0 |
|
- Iou Flat-parkingdriveway: nan |
|
- Iou Flat-railtrack: 0.0 |
|
- Iou Flat-curb: 0.0 |
|
- Iou Human-person: 0.0 |
|
- Iou Human-rider: 0.0 |
|
- Iou Vehicle-car: 0.0 |
|
- Iou Vehicle-truck: 0.0 |
|
- Iou Vehicle-bus: nan |
|
- Iou Vehicle-tramtrain: 0.0 |
|
- Iou Vehicle-motorcycle: 0.0 |
|
- Iou Vehicle-bicycle: 0.0 |
|
- Iou Vehicle-caravan: 0.0 |
|
- Iou Vehicle-cartrailer: 0.0 |
|
- Iou Construction-building: 0.0 |
|
- Iou Construction-door: 0.0 |
|
- Iou Construction-wall: 0.0 |
|
- Iou Construction-fenceguardrail: 0.0 |
|
- Iou Construction-bridge: nan |
|
- Iou Construction-tunnel: 0.0 |
|
- Iou Construction-stairs: 0.0 |
|
- Iou Object-pole: 0.0 |
|
- Iou Object-trafficsign: 0.0 |
|
- Iou Object-trafficlight: 0.0 |
|
- Iou Nature-vegetation: 0.0 |
|
- Iou Nature-terrain: 0.0 |
|
- Iou Sky: 0.0 |
|
- Iou Void-ground: 0.0 |
|
- Iou Void-dynamic: 0.0 |
|
- Iou Void-static: 0.0 |
|
- Iou Void-unclear: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.5 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| |
|
| 1.8968 | 0.07 | 20 | 12.4141 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.4115 | 0.15 | 40 | 5.4547 | 0.0010 | 0.0310 | 0.0045 | nan | 0.0 | 0.0487 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2040 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.6733 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0218 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0036 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0020 | 0.0 | 0.0035 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.7593 | 0.22 | 60 | 2.5077 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.447 | 0.3 | 80 | 2.3171 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.0908 | 0.37 | 100 | 2.2973 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.0462 | 0.45 | 120 | 2.3021 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.111 | 0.52 | 140 | 2.3397 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.4589 | 0.6 | 160 | 2.3188 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.7771 | 0.67 | 180 | 2.2841 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.3753 | 0.75 | 200 | 2.2824 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.4775 | 0.82 | 220 | 2.2890 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.1964 | 0.9 | 240 | 2.2757 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
| 2.1973 | 0.97 | 260 | 2.2794 | 0.0007 | 0.0333 | 0.0216 | nan | 0.0 | 1.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|