Edit model card

Heron GIT Japanese StableLM Base 7B

Model Details

Heron GIT Japanese StableLM Base 7B is a vision-language model that can converse about input images.
This model was trained using the heron library. Please refer to the code for details.

Usage

Follow the installation guide.

import torch
from heron.models.git_llm.git_japanese_stablelm_alpha import GitJapaneseStableLMAlphaForCausalLM
from transformers import AutoProcessor, LlamaTokenizer

device_id = 0
device = f"cuda:{device_id}"

MODEL_NAME = "turing-motors/heron-chat-git-ja-stablelm-base-7b-v1"
    
model = GitJapaneseStableLMAlphaForCausalLM.from_pretrained(
    MODEL_NAME, torch_dtype=torch.float16, ignore_mismatched_sizes=True
)
model.eval()
model.to(device)

# prepare a processor
processor = AutoProcessor.from_pretrained(MODEL_NAME)
tokenizer = LlamaTokenizer.from_pretrained(
    "novelai/nerdstash-tokenizer-v1",
    padding_side="right",
    additional_special_tokens=["▁▁"],
)
processor.tokenizer = tokenizer


import requests
from PIL import Image

# prepare inputs
url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw)

text = f"##human: この画像の面白い点は何ですか?\n##gpt: "

# do preprocessing
inputs = processor(
    text=text,
    images=image,
    return_tensors="pt",
    truncation=True,
)

inputs = {k: v.to(device) for k, v in inputs.items()}

# do inference
with torch.no_grad():
    out = model.generate(**inputs, max_length=256, do_sample=False, temperature=0., no_repeat_ngram_size=2)

# print result
print(processor.tokenizer.batch_decode(out))

Model Details

Training

  1. The GIT adaptor was trained with LLaVA-Pratrain-JA.
  2. The LLM and the adapter were fully fine-tuned with LLaVA-Instruct-620K-JA-v2.

Training Dataset

  1. LLaVA-Pratrain-JA
  2. LLaVA-Instruct-620K-JA-v2

Use and Limitations

Intended Use

This model is intended for use in chat-like applications and for research purposes.

Limitations

The model may produce inaccurate or false information, and its accuracy is not guaranteed. It is still in the research and development stage.

How to cite

@misc{inoue2024heronbench,
      title={Heron-Bench: A Benchmark for Evaluating Vision Language Models in Japanese}, 
      author={Yuichi Inoue and Kento Sasaki and Yuma Ochi and Kazuki Fujii and Kotaro Tanahashi and Yu Yamaguchi},
      year={2024},
      eprint={2404.07824},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

license: cc-by-nc-4.0

Downloads last month
552
Safetensors
Model size
7.32B params
Tensor type
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.