Edit model card

segformer-b5-finetuned-HikingHD

This model is a fine-tuned version of nvidia/mit-b5 on the twdent/HikingHD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1077
  • Mean Iou: 0.6364
  • Mean Accuracy: 0.9770
  • Overall Accuracy: 0.9771
  • Accuracy Unlabeled: nan
  • Accuracy Traversable: 0.9758
  • Accuracy Non-traversable: 0.9781
  • Iou Unlabeled: 0.0
  • Iou Traversable: 0.9493
  • Iou Non-traversable: 0.9600
  • Local Testing:
    • Average inference time: 0.9943107657962376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Traversable Accuracy Non-traversable Iou Unlabeled Iou Traversable Iou Non-traversable
0.1595 1.33 20 0.1789 0.9314 0.9657 0.9649 nan 0.9727 0.9588 nan 0.9240 0.9388
0.3593 2.67 40 0.1137 0.9429 0.9731 0.9709 nan 0.9911 0.9551 nan 0.9372 0.9485
0.1002 4.0 60 0.0979 0.9363 0.9661 0.9677 nan 0.9531 0.9791 nan 0.9282 0.9444
0.0348 5.33 80 0.0933 0.9442 0.9713 0.9717 nan 0.9675 0.9750 nan 0.9375 0.9509
0.0374 6.67 100 0.0884 0.9459 0.9714 0.9727 nan 0.9611 0.9817 nan 0.9391 0.9528
0.0447 8.0 120 0.0886 0.9491 0.9737 0.9743 nan 0.9684 0.9789 nan 0.9430 0.9553
0.0464 9.33 140 0.0790 0.9564 0.9783 0.9780 nan 0.9804 0.9762 nan 0.9514 0.9614
0.0421 10.67 160 0.0868 0.9540 0.9764 0.9768 nan 0.9733 0.9796 nan 0.9485 0.9596
0.0253 12.0 180 0.0887 0.9530 0.9756 0.9763 nan 0.9700 0.9812 nan 0.9472 0.9587
0.0364 13.33 200 0.0960 0.9494 0.9733 0.9745 nan 0.9638 0.9829 nan 0.9431 0.9558
0.0276 14.67 220 0.0980 0.9470 0.9717 0.9732 nan 0.9595 0.9840 nan 0.9402 0.9538
0.0279 16.0 240 0.0914 0.9534 0.9761 0.9765 nan 0.9725 0.9796 nan 0.9478 0.9590
0.026 17.33 260 0.0886 0.9557 0.9778 0.9777 nan 0.9792 0.9764 nan 0.9506 0.9609
0.0228 18.67 280 0.0888 0.9547 0.9775 0.9771 nan 0.9804 0.9745 nan 0.9495 0.9599
0.0259 20.0 300 0.0984 0.9505 0.9742 0.9750 nan 0.9679 0.9806 nan 0.9444 0.9565
0.0306 21.33 320 0.0890 0.9542 0.9763 0.9769 nan 0.9716 0.9811 nan 0.9487 0.9598
0.0305 22.67 340 0.0967 0.6352 0.9752 0.9762 nan 0.9669 0.9834 0.0 0.9468 0.9586
0.0219 24.0 360 0.0983 0.9538 0.9764 0.9767 nan 0.9735 0.9792 nan 0.9483 0.9593
0.023 25.33 380 0.0940 0.6368 0.9771 0.9774 nan 0.9743 0.9799 0.0 0.9499 0.9606
0.0217 26.67 400 0.0973 0.6360 0.9767 0.9768 nan 0.9758 0.9776 0.0 0.9486 0.9595
0.0267 28.0 420 0.1023 0.6360 0.9770 0.9768 nan 0.9792 0.9749 0.0 0.9487 0.9593
0.0202 29.33 440 0.0955 0.6376 0.9783 0.9780 nan 0.9802 0.9764 0.0 0.9514 0.9615
0.0225 30.67 460 0.1016 0.6360 0.9763 0.9768 nan 0.9727 0.9800 0.0 0.9484 0.9595
0.0288 32.0 480 0.1026 0.6354 0.9756 0.9763 nan 0.9697 0.9815 0.0 0.9473 0.9588
0.0209 33.33 500 0.0977 0.6370 0.9771 0.9776 nan 0.9735 0.9808 0.0 0.9502 0.9609
0.0202 34.67 520 0.1005 0.6367 0.9772 0.9773 nan 0.9762 0.9782 0.0 0.9497 0.9604
0.0194 36.0 540 0.1032 0.6365 0.9771 0.9772 nan 0.9766 0.9776 0.0 0.9495 0.9601
0.0165 37.33 560 0.1013 0.6373 0.9777 0.9778 nan 0.9769 0.9785 0.0 0.9508 0.9612
0.0226 38.67 580 0.1005 0.6367 0.9771 0.9773 nan 0.9752 0.9790 0.0 0.9497 0.9604
0.0206 40.0 600 0.1032 0.6369 0.9773 0.9775 nan 0.9757 0.9789 0.0 0.9501 0.9607
0.016 41.33 620 0.1007 0.6373 0.9776 0.9777 nan 0.9761 0.9790 0.0 0.9506 0.9611
0.012 42.67 640 0.1048 0.6364 0.9768 0.9771 nan 0.9748 0.9789 0.0 0.9493 0.9601
0.0261 44.0 660 0.1073 0.6364 0.9770 0.9771 nan 0.9760 0.9780 0.0 0.9493 0.9600
0.0125 45.33 680 0.1088 0.6357 0.9761 0.9765 nan 0.9727 0.9795 0.0 0.9479 0.9591
0.0259 46.67 700 0.1073 0.6365 0.9770 0.9772 nan 0.9760 0.9780 0.0 0.9494 0.9601
0.0173 48.0 720 0.1052 0.6366 0.9770 0.9772 nan 0.9755 0.9785 0.0 0.9495 0.9602
0.0162 49.33 740 0.1077 0.6364 0.9770 0.9771 nan 0.9758 0.9781 0.0 0.9493 0.9600

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for twdent/segformer-b5-finetuned-HikingHD

Base model

nvidia/mit-b5
Finetuned
(42)
this model