twright8's picture
Update README.md
7924738 verified
---
base_model: BAAI/bge-base-en-v1.5
library_name: setfit
metrics:
- f1
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Discussion on recent report publication
- text: Growth
- text: The roundtable was arranged in order to provide an overview of the work of
Alliance members and promote international development policy positions to the
Scottish Conservatives. During the meeting we presented the work of SCIAF and
its campaign for a world leading climate change response. In particular SCIAF
explained how climate change is already affecting some of the poorest communities
in the world and is therefore a central concern for international development.
We argued that Scotland needs to do what it can to mitigate climate change.
- text: To introduce Energy UK discuss the energy industries contribution to tackling
climate change and discuss stage 1 of theClimate Change (Emissions Reduction Targets)
(Scotland) Bill. Also discussed the Scottish Government's ambition on electric
vehicles and the role of the energy industry in a successful roll out.
- text: To discuss our key asks on the Climate Change (Emissions Reduction Targets)
(Scotland) Bill in advance of Stage 2 including support for amendments on regional
land use partnerships and land use strategy as means to deliver climate mitigation
for land.
inference: True
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.9667149059334297
name: F1
- type: accuracy
value: 0.9420654911838791
name: Accuracy
---
# SetFit with BAAI/bge-base-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
undefined = Health
1 = Housing
2 = Defence
3 = Climate
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Evaluation
### Metrics
| Label | F1 | Accuracy |
|:--------|:-------|:---------|
| **all** | 0.9667 | 0.9421 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("twright8/setfit_lobbying_classifier")
# Run inference
preds = model("Growth")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 39.4538 | 282 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (4, 9)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (1.0797496673911536e-05, 3.457046714445997e-05)
- head_learning_rate: 0.0004470582121407239
- loss: CoSENTLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0002 | 1 | 2.097 | - |
| 0.0077 | 50 | 8.5514 | - |
| 0.0155 | 100 | 3.5635 | - |
| 0.0232 | 150 | 2.9266 | - |
| 0.0310 | 200 | 2.1173 | - |
| 0.0387 | 250 | 3.1002 | - |
| 0.0465 | 300 | 3.6942 | - |
| 0.0542 | 350 | 3.4905 | - |
| 0.0620 | 400 | 4.0804 | - |
| 0.0697 | 450 | 1.6071 | - |
| 0.0774 | 500 | 2.3018 | - |
| 0.0852 | 550 | 2.3876 | - |
| 0.0929 | 600 | 0.2511 | - |
| 0.1007 | 650 | 0.2435 | - |
| 0.1084 | 700 | 2.2596 | - |
| 0.1162 | 750 | 1.121 | - |
| 0.1239 | 800 | 0.0907 | - |
| 0.1317 | 850 | 0.2172 | - |
| 0.1394 | 900 | 3.06 | - |
| 0.1471 | 950 | 0.0074 | - |
| 0.1549 | 1000 | 0.457 | - |
| 0.1626 | 1050 | 0.0575 | - |
| 0.1704 | 1100 | 0.0002 | - |
| 0.1781 | 1150 | 0.0003 | - |
| 0.1859 | 1200 | 0.0047 | - |
| 0.1936 | 1250 | 0.0004 | - |
| 0.2014 | 1300 | 0.0006 | - |
| 0.2091 | 1350 | 0.0027 | - |
| 0.2169 | 1400 | 0.0004 | - |
| 0.2246 | 1450 | 0.0009 | - |
| 0.2323 | 1500 | 0.0006 | - |
| 0.2401 | 1550 | 0.0003 | - |
| 0.2478 | 1600 | 0.0077 | - |
| 0.2556 | 1650 | 0.0004 | - |
| 0.2633 | 1700 | 0.0003 | - |
| 0.2711 | 1750 | 0.0005 | - |
| 0.2788 | 1800 | 0.0004 | - |
| 0.2866 | 1850 | 0.0007 | - |
| 0.2943 | 1900 | 0.0009 | - |
| 0.3020 | 1950 | 0.0062 | - |
| 0.3098 | 2000 | 0.0003 | - |
| 0.3175 | 2050 | 0.0001 | - |
| 0.3253 | 2100 | 0.0685 | - |
| 0.3330 | 2150 | 0.0008 | - |
| 0.3408 | 2200 | 0.0 | - |
| 0.3485 | 2250 | 0.0004 | - |
| 0.3563 | 2300 | 0.0004 | - |
| 0.3640 | 2350 | 0.0002 | - |
| 0.3717 | 2400 | 0.0001 | - |
| 0.3795 | 2450 | 0.0004 | - |
| 0.3872 | 2500 | 0.0004 | - |
| 0.3950 | 2550 | 0.0001 | - |
| 0.4027 | 2600 | 0.0001 | - |
| 0.4105 | 2650 | 0.0001 | - |
| 0.4182 | 2700 | 0.0005 | - |
| 0.4260 | 2750 | 0.0002 | - |
| 0.4337 | 2800 | 0.0001 | - |
| 0.4414 | 2850 | 0.0003 | - |
| 0.4492 | 2900 | 0.0005 | - |
| 0.4569 | 2950 | 0.0014 | - |
| 0.4647 | 3000 | 0.0001 | - |
| 0.4724 | 3050 | 0.0001 | - |
| 0.4802 | 3100 | 0.0002 | - |
| 0.4879 | 3150 | 0.0 | - |
| 0.4957 | 3200 | 0.0006 | - |
| 0.5034 | 3250 | 0.0 | - |
| 0.5112 | 3300 | 0.0 | - |
| 0.5189 | 3350 | 0.0002 | - |
| 0.5266 | 3400 | 0.0001 | - |
| 0.5344 | 3450 | 0.0006 | - |
| 0.5421 | 3500 | 0.0002 | - |
| 0.5499 | 3550 | 0.0001 | - |
| 0.5576 | 3600 | 0.0001 | - |
| 0.5654 | 3650 | 0.0001 | - |
| 0.5731 | 3700 | 0.0 | - |
| 0.5809 | 3750 | 0.0002 | - |
| 0.5886 | 3800 | 0.0 | - |
| 0.5963 | 3850 | 0.0044 | - |
| 0.6041 | 3900 | 0.0002 | - |
| 0.6118 | 3950 | 0.0001 | - |
| 0.6196 | 4000 | 0.0003 | - |
| 0.6273 | 4050 | 0.0005 | - |
| 0.6351 | 4100 | 0.0002 | - |
| 0.6428 | 4150 | 0.0 | - |
| 0.6506 | 4200 | 0.0003 | - |
| 0.6583 | 4250 | 0.0 | - |
| 0.6660 | 4300 | 0.0001 | - |
| 0.6738 | 4350 | 0.0 | - |
| 0.6815 | 4400 | 0.0008 | - |
| 0.6893 | 4450 | 0.0 | - |
| 0.6970 | 4500 | 0.0004 | - |
| 0.7048 | 4550 | 0.0001 | - |
| 0.7125 | 4600 | 0.0 | - |
| 0.7203 | 4650 | 0.0 | - |
| 0.7280 | 4700 | 0.0 | - |
| 0.7357 | 4750 | 0.0001 | - |
| 0.7435 | 4800 | 0.0001 | - |
| 0.7512 | 4850 | 0.001 | - |
| 0.7590 | 4900 | 0.0001 | - |
| 0.7667 | 4950 | 0.0 | - |
| 0.7745 | 5000 | 0.0001 | - |
| 0.7822 | 5050 | 0.0 | - |
| 0.7900 | 5100 | 0.0018 | - |
| 0.7977 | 5150 | 0.0001 | - |
| 0.8055 | 5200 | 0.0 | - |
| 0.8132 | 5250 | 0.0003 | - |
| 0.8209 | 5300 | 0.0003 | - |
| 0.8287 | 5350 | 0.0003 | - |
| 0.8364 | 5400 | 0.0001 | - |
| 0.8442 | 5450 | 0.0001 | - |
| 0.8519 | 5500 | 0.0001 | - |
| 0.8597 | 5550 | 0.0001 | - |
| 0.8674 | 5600 | 0.0001 | - |
| 0.8752 | 5650 | 0.0 | - |
| 0.8829 | 5700 | 0.0003 | - |
| 0.8906 | 5750 | 0.0003 | - |
| 0.8984 | 5800 | 0.0001 | - |
| 0.9061 | 5850 | 0.0001 | - |
| 0.9139 | 5900 | 0.0002 | - |
| 0.9216 | 5950 | 0.0 | - |
| 0.9294 | 6000 | 0.0001 | - |
| 0.9371 | 6050 | 0.0 | - |
| 0.9449 | 6100 | 0.0 | - |
| 0.9526 | 6150 | 0.0001 | - |
| 0.9603 | 6200 | 0.0 | - |
| 0.9681 | 6250 | 0.0001 | - |
| 0.9758 | 6300 | 0.0002 | - |
| 0.9836 | 6350 | 0.0 | - |
| 0.9913 | 6400 | 0.0 | - |
| 0.9991 | 6450 | 0.0002 | - |
| **1.0** | **6456** | **-** | **1.3837** |
| 1.0068 | 6500 | 0.0001 | - |
| 1.0146 | 6550 | 0.0001 | - |
| 1.0223 | 6600 | 0.0002 | - |
| 1.0300 | 6650 | 0.0001 | - |
| 1.0378 | 6700 | 0.0005 | - |
| 1.0455 | 6750 | 0.0001 | - |
| 1.0533 | 6800 | 0.0001 | - |
| 1.0610 | 6850 | 0.0 | - |
| 1.0688 | 6900 | 0.0 | - |
| 1.0765 | 6950 | 0.0009 | - |
| 1.0843 | 7000 | 0.0 | - |
| 1.0920 | 7050 | 0.0032 | - |
| 1.0998 | 7100 | 0.0001 | - |
| 1.1075 | 7150 | 0.0001 | - |
| 1.1152 | 7200 | 0.0001 | - |
| 1.1230 | 7250 | 0.0 | - |
| 1.1307 | 7300 | 0.0001 | - |
| 1.1385 | 7350 | 0.0 | - |
| 1.1462 | 7400 | 0.0 | - |
| 1.1540 | 7450 | 0.0002 | - |
| 1.1617 | 7500 | 0.0 | - |
| 1.1695 | 7550 | 0.0427 | - |
| 1.1772 | 7600 | 0.0 | - |
| 1.1849 | 7650 | 0.0 | - |
| 1.1927 | 7700 | 0.0 | - |
| 1.2004 | 7750 | 0.0002 | - |
| 1.2082 | 7800 | 0.0 | - |
| 1.2159 | 7850 | 0.0 | - |
| 1.2237 | 7900 | 0.0 | - |
| 1.2314 | 7950 | 0.0 | - |
| 1.2392 | 8000 | 0.0001 | - |
| 1.2469 | 8050 | 0.0 | - |
| 1.2546 | 8100 | 0.0001 | - |
| 1.2624 | 8150 | 0.0 | - |
| 1.2701 | 8200 | 0.0 | - |
| 1.2779 | 8250 | 0.0 | - |
| 1.2856 | 8300 | 0.0 | - |
| 1.2934 | 8350 | 0.0 | - |
| 1.3011 | 8400 | 0.0 | - |
| 1.3089 | 8450 | 0.0 | - |
| 1.3166 | 8500 | 0.0 | - |
| 1.3243 | 8550 | 0.0001 | - |
| 1.3321 | 8600 | 0.0 | - |
| 1.3398 | 8650 | 0.0002 | - |
| 1.3476 | 8700 | 0.0 | - |
| 1.3553 | 8750 | 0.0006 | - |
| 1.3631 | 8800 | 0.0 | - |
| 1.3708 | 8850 | 0.0 | - |
| 1.3786 | 8900 | 0.0001 | - |
| 1.3863 | 8950 | 0.0 | - |
| 1.3941 | 9000 | 0.0001 | - |
| 1.4018 | 9050 | 0.0 | - |
| 1.4095 | 9100 | 0.0002 | - |
| 1.4173 | 9150 | 0.0 | - |
| 1.4250 | 9200 | 0.0 | - |
| 1.4328 | 9250 | 0.0 | - |
| 1.4405 | 9300 | 0.0 | - |
| 1.4483 | 9350 | 0.0 | - |
| 1.4560 | 9400 | 0.0 | - |
| 1.4638 | 9450 | 0.0 | - |
| 1.4715 | 9500 | 0.0 | - |
| 1.4792 | 9550 | 0.0 | - |
| 1.4870 | 9600 | 0.0 | - |
| 1.4947 | 9650 | 0.0005 | - |
| 1.5025 | 9700 | 0.0 | - |
| 1.5102 | 9750 | 0.0001 | - |
| 1.5180 | 9800 | 0.0001 | - |
| 1.5257 | 9850 | 0.0001 | - |
| 1.5335 | 9900 | 0.0 | - |
| 1.5412 | 9950 | 0.0 | - |
| 1.5489 | 10000 | 0.0 | - |
| 1.5567 | 10050 | 0.0 | - |
| 1.5644 | 10100 | 0.0001 | - |
| 1.5722 | 10150 | 0.0 | - |
| 1.5799 | 10200 | 0.0002 | - |
| 1.5877 | 10250 | 0.0001 | - |
| 1.5954 | 10300 | 0.0005 | - |
| 1.6032 | 10350 | 0.0 | - |
| 1.6109 | 10400 | 0.0 | - |
| 1.6186 | 10450 | 0.0003 | - |
| 1.6264 | 10500 | 0.0002 | - |
| 1.6341 | 10550 | 0.0 | - |
| 1.6419 | 10600 | 0.0 | - |
| 1.6496 | 10650 | 0.0001 | - |
| 1.6574 | 10700 | 0.0002 | - |
| 1.6651 | 10750 | 0.0002 | - |
| 1.6729 | 10800 | 0.0054 | - |
| 1.6806 | 10850 | 0.0005 | - |
| 1.6884 | 10900 | 0.0001 | - |
| 1.6961 | 10950 | 0.0 | - |
| 1.7038 | 11000 | 0.0 | - |
| 1.7116 | 11050 | 0.0001 | - |
| 1.7193 | 11100 | 0.0001 | - |
| 1.7271 | 11150 | 0.0 | - |
| 1.7348 | 11200 | 0.0001 | - |
| 1.7426 | 11250 | 0.0 | - |
| 1.7503 | 11300 | 0.0001 | - |
| 1.7581 | 11350 | 0.0004 | - |
| 1.7658 | 11400 | 0.0 | - |
| 1.7735 | 11450 | 0.0001 | - |
| 1.7813 | 11500 | 0.0 | - |
| 1.7890 | 11550 | 0.0 | - |
| 1.7968 | 11600 | 0.0 | - |
| 1.8045 | 11650 | 0.0 | - |
| 1.8123 | 11700 | 0.0001 | - |
| 1.8200 | 11750 | 0.0002 | - |
| 1.8278 | 11800 | 0.0 | - |
| 1.8355 | 11850 | 0.0001 | - |
| 1.8432 | 11900 | 0.0 | - |
| 1.8510 | 11950 | 0.0001 | - |
| 1.8587 | 12000 | 0.0 | - |
| 1.8665 | 12050 | 0.0 | - |
| 1.8742 | 12100 | 0.0 | - |
| 1.8820 | 12150 | 0.0001 | - |
| 1.8897 | 12200 | 0.0 | - |
| 1.8975 | 12250 | 0.0 | - |
| 1.9052 | 12300 | 0.0 | - |
| 1.9129 | 12350 | 0.0 | - |
| 1.9207 | 12400 | 0.0 | - |
| 1.9284 | 12450 | 0.0 | - |
| 1.9362 | 12500 | 0.0 | - |
| 1.9439 | 12550 | 0.0003 | - |
| 1.9517 | 12600 | 0.0001 | - |
| 1.9594 | 12650 | 0.0 | - |
| 1.9672 | 12700 | 0.0001 | - |
| 1.9749 | 12750 | 0.0 | - |
| 1.9827 | 12800 | 0.0 | - |
| 1.9904 | 12850 | 0.0 | - |
| 1.9981 | 12900 | 0.0001 | - |
| 2.0 | 12912 | - | 2.611 |
| 2.0059 | 12950 | 0.0 | - |
| 2.0136 | 13000 | 0.0001 | - |
| 2.0214 | 13050 | 0.0001 | - |
| 2.0291 | 13100 | 0.0 | - |
| 2.0369 | 13150 | 0.0 | - |
| 2.0446 | 13200 | 0.0001 | - |
| 2.0524 | 13250 | 0.0 | - |
| 2.0601 | 13300 | 0.0002 | - |
| 2.0678 | 13350 | 0.0 | - |
| 2.0756 | 13400 | 0.0 | - |
| 2.0833 | 13450 | 0.0001 | - |
| 2.0911 | 13500 | 0.0001 | - |
| 2.0988 | 13550 | 0.0003 | - |
| 2.1066 | 13600 | 0.0 | - |
| 2.1143 | 13650 | 0.0001 | - |
| 2.1221 | 13700 | 0.0001 | - |
| 2.1298 | 13750 | 0.0001 | - |
| 2.1375 | 13800 | 0.0001 | - |
| 2.1453 | 13850 | 0.0 | - |
| 2.1530 | 13900 | 0.0 | - |
| 2.1608 | 13950 | 0.0 | - |
| 2.1685 | 14000 | 0.0 | - |
| 2.1763 | 14050 | 0.0 | - |
| 2.1840 | 14100 | 0.0001 | - |
| 2.1918 | 14150 | 0.0 | - |
| 2.1995 | 14200 | 0.0 | - |
| 2.2072 | 14250 | 0.0001 | - |
| 2.2150 | 14300 | 0.0 | - |
| 2.2227 | 14350 | 0.0 | - |
| 2.2305 | 14400 | 0.0004 | - |
| 2.2382 | 14450 | 0.0001 | - |
| 2.2460 | 14500 | 0.0 | - |
| 2.2537 | 14550 | 0.0003 | - |
| 2.2615 | 14600 | 0.0 | - |
| 2.2692 | 14650 | 0.0001 | - |
| 2.2770 | 14700 | 0.0001 | - |
| 2.2847 | 14750 | 0.0 | - |
| 2.2924 | 14800 | 0.0 | - |
| 2.3002 | 14850 | 0.0005 | - |
| 2.3079 | 14900 | 0.0 | - |
| 2.3157 | 14950 | 0.0002 | - |
| 2.3234 | 15000 | 0.0 | - |
| 2.3312 | 15050 | 0.0 | - |
| 2.3389 | 15100 | 0.0001 | - |
| 2.3467 | 15150 | 0.0001 | - |
| 2.3544 | 15200 | 0.0002 | - |
| 2.3621 | 15250 | 0.0001 | - |
| 2.3699 | 15300 | 0.0 | - |
| 2.3776 | 15350 | 0.0 | - |
| 2.3854 | 15400 | 0.0002 | - |
| 2.3931 | 15450 | 0.0003 | - |
| 2.4009 | 15500 | 0.0 | - |
| 2.4086 | 15550 | 0.0 | - |
| 2.4164 | 15600 | 0.0 | - |
| 2.4241 | 15650 | 0.0001 | - |
| 2.4318 | 15700 | 0.0 | - |
| 2.4396 | 15750 | 0.0 | - |
| 2.4473 | 15800 | 0.0002 | - |
| 2.4551 | 15850 | 0.0 | - |
| 2.4628 | 15900 | 0.0 | - |
| 2.4706 | 15950 | 0.0 | - |
| 2.4783 | 16000 | 0.0 | - |
| 2.4861 | 16050 | 0.0001 | - |
| 2.4938 | 16100 | 0.0 | - |
| 2.5015 | 16150 | 0.0 | - |
| 2.5093 | 16200 | 0.0 | - |
| 2.5170 | 16250 | 0.0 | - |
| 2.5248 | 16300 | 0.0 | - |
| 2.5325 | 16350 | 0.0 | - |
| 2.5403 | 16400 | 0.0 | - |
| 2.5480 | 16450 | 0.0 | - |
| 2.5558 | 16500 | 0.0 | - |
| 2.5635 | 16550 | 0.0001 | - |
| 2.5713 | 16600 | 0.0 | - |
| 2.5790 | 16650 | 0.0 | - |
| 2.5867 | 16700 | 0.0 | - |
| 2.5945 | 16750 | 0.0 | - |
| 2.6022 | 16800 | 0.0009 | - |
| 2.6100 | 16850 | 0.0001 | - |
| 2.6177 | 16900 | 0.0 | - |
| 2.6255 | 16950 | 0.0001 | - |
| 2.6332 | 17000 | 0.0 | - |
| 2.6410 | 17050 | 0.0 | - |
| 2.6487 | 17100 | 0.0001 | - |
| 2.6564 | 17150 | 0.0 | - |
| 2.6642 | 17200 | 0.0 | - |
| 2.6719 | 17250 | 0.0 | - |
| 2.6797 | 17300 | 0.0 | - |
| 2.6874 | 17350 | 0.0004 | - |
| 2.6952 | 17400 | 0.0 | - |
| 2.7029 | 17450 | 0.0 | - |
| 2.7107 | 17500 | 0.0 | - |
| 2.7184 | 17550 | 0.0 | - |
| 2.7261 | 17600 | 0.0 | - |
| 2.7339 | 17650 | 0.0 | - |
| 2.7416 | 17700 | 0.0001 | - |
| 2.7494 | 17750 | 0.0 | - |
| 2.7571 | 17800 | 0.0 | - |
| 2.7649 | 17850 | 0.0001 | - |
| 2.7726 | 17900 | 0.0 | - |
| 2.7804 | 17950 | 0.0001 | - |
| 2.7881 | 18000 | 0.0001 | - |
| 2.7958 | 18050 | 0.0 | - |
| 2.8036 | 18100 | 0.0 | - |
| 2.8113 | 18150 | 0.0 | - |
| 2.8191 | 18200 | 0.0 | - |
| 2.8268 | 18250 | 0.0 | - |
| 2.8346 | 18300 | 0.0001 | - |
| 2.8423 | 18350 | 0.0 | - |
| 2.8501 | 18400 | 0.0 | - |
| 2.8578 | 18450 | 0.0 | - |
| 2.8656 | 18500 | 0.0 | - |
| 2.8733 | 18550 | 0.0 | - |
| 2.8810 | 18600 | 0.0 | - |
| 2.8888 | 18650 | 0.0 | - |
| 2.8965 | 18700 | 0.0 | - |
| 2.9043 | 18750 | 0.0 | - |
| 2.9120 | 18800 | 0.0001 | - |
| 2.9198 | 18850 | 0.0 | - |
| 2.9275 | 18900 | 0.0 | - |
| 2.9353 | 18950 | 0.0 | - |
| 2.9430 | 19000 | 0.0 | - |
| 2.9507 | 19050 | 0.0 | - |
| 2.9585 | 19100 | 0.0 | - |
| 2.9662 | 19150 | 0.0 | - |
| 2.9740 | 19200 | 0.0 | - |
| 2.9817 | 19250 | 0.0003 | - |
| 2.9895 | 19300 | 0.0001 | - |
| 2.9972 | 19350 | 0.0 | - |
| 3.0 | 19368 | - | 2.0845 |
| 3.0050 | 19400 | 0.0 | - |
| 3.0127 | 19450 | 0.0001 | - |
| 3.0204 | 19500 | 0.0 | - |
| 3.0282 | 19550 | 0.0 | - |
| 3.0359 | 19600 | 0.0 | - |
| 3.0437 | 19650 | 0.0 | - |
| 3.0514 | 19700 | 0.0 | - |
| 3.0592 | 19750 | 0.0 | - |
| 3.0669 | 19800 | 0.0001 | - |
| 3.0747 | 19850 | 0.0 | - |
| 3.0824 | 19900 | 0.0 | - |
| 3.0901 | 19950 | 0.0001 | - |
| 3.0979 | 20000 | 0.0 | - |
| 3.1056 | 20050 | 0.0 | - |
| 3.1134 | 20100 | 0.0 | - |
| 3.1211 | 20150 | 0.0001 | - |
| 3.1289 | 20200 | 0.0 | - |
| 3.1366 | 20250 | 0.0 | - |
| 3.1444 | 20300 | 0.0 | - |
| 3.1521 | 20350 | 0.0 | - |
| 3.1599 | 20400 | 0.0 | - |
| 3.1676 | 20450 | 0.0001 | - |
| 3.1753 | 20500 | 0.0 | - |
| 3.1831 | 20550 | 0.0001 | - |
| 3.1908 | 20600 | 0.0 | - |
| 3.1986 | 20650 | 0.0 | - |
| 3.2063 | 20700 | 0.0 | - |
| 3.2141 | 20750 | 0.0 | - |
| 3.2218 | 20800 | 0.0 | - |
| 3.2296 | 20850 | 0.0003 | - |
| 3.2373 | 20900 | 0.0 | - |
| 3.2450 | 20950 | 0.0 | - |
| 3.2528 | 21000 | 0.0 | - |
| 3.2605 | 21050 | 0.0 | - |
| 3.2683 | 21100 | 0.0001 | - |
| 3.2760 | 21150 | 0.0001 | - |
| 3.2838 | 21200 | 0.0 | - |
| 3.2915 | 21250 | 0.0 | - |
| 3.2993 | 21300 | 0.0 | - |
| 3.3070 | 21350 | 0.0 | - |
| 3.3147 | 21400 | 0.0 | - |
| 3.3225 | 21450 | 0.0001 | - |
| 3.3302 | 21500 | 0.0 | - |
| 3.3380 | 21550 | 0.0 | - |
| 3.3457 | 21600 | 0.0 | - |
| 3.3535 | 21650 | 0.0 | - |
| 3.3612 | 21700 | 0.0 | - |
| 3.3690 | 21750 | 0.0 | - |
| 3.3767 | 21800 | 0.0 | - |
| 3.3844 | 21850 | 0.0 | - |
| 3.3922 | 21900 | 0.0001 | - |
| 3.3999 | 21950 | 0.0 | - |
| 3.4077 | 22000 | 0.0 | - |
| 3.4154 | 22050 | 0.0001 | - |
| 3.4232 | 22100 | 0.0 | - |
| 3.4309 | 22150 | 0.0001 | - |
| 3.4387 | 22200 | 0.0 | - |
| 3.4464 | 22250 | 0.0 | - |
| 3.4542 | 22300 | 0.0 | - |
| 3.4619 | 22350 | 0.0001 | - |
| 3.4696 | 22400 | 0.0 | - |
| 3.4774 | 22450 | 0.0 | - |
| 3.4851 | 22500 | 0.0 | - |
| 3.4929 | 22550 | 0.0001 | - |
| 3.5006 | 22600 | 0.0002 | - |
| 3.5084 | 22650 | 0.0001 | - |
| 3.5161 | 22700 | 0.0 | - |
| 3.5239 | 22750 | 0.0001 | - |
| 3.5316 | 22800 | 0.0 | - |
| 3.5393 | 22850 | 0.0 | - |
| 3.5471 | 22900 | 0.0001 | - |
| 3.5548 | 22950 | 0.0 | - |
| 3.5626 | 23000 | 0.0 | - |
| 3.5703 | 23050 | 0.0 | - |
| 3.5781 | 23100 | 0.0 | - |
| 3.5858 | 23150 | 0.0001 | - |
| 3.5936 | 23200 | 0.0 | - |
| 3.6013 | 23250 | 0.0001 | - |
| 3.6090 | 23300 | 0.0001 | - |
| 3.6168 | 23350 | 0.0 | - |
| 3.6245 | 23400 | 0.0003 | - |
| 3.6323 | 23450 | 0.0 | - |
| 3.6400 | 23500 | 0.0 | - |
| 3.6478 | 23550 | 0.0001 | - |
| 3.6555 | 23600 | 0.0 | - |
| 3.6633 | 23650 | 0.0 | - |
| 3.6710 | 23700 | 0.0 | - |
| 3.6787 | 23750 | 0.0001 | - |
| 3.6865 | 23800 | 0.0 | - |
| 3.6942 | 23850 | 0.0001 | - |
| 3.7020 | 23900 | 0.0002 | - |
| 3.7097 | 23950 | 0.0 | - |
| 3.7175 | 24000 | 0.0 | - |
| 3.7252 | 24050 | 0.0 | - |
| 3.7330 | 24100 | 0.0 | - |
| 3.7407 | 24150 | 0.0001 | - |
| 3.7485 | 24200 | 0.0 | - |
| 3.7562 | 24250 | 0.0 | - |
| 3.7639 | 24300 | 0.0 | - |
| 3.7717 | 24350 | 0.0 | - |
| 3.7794 | 24400 | 0.0 | - |
| 3.7872 | 24450 | 0.0 | - |
| 3.7949 | 24500 | 0.0001 | - |
| 3.8027 | 24550 | 0.0001 | - |
| 3.8104 | 24600 | 0.0 | - |
| 3.8182 | 24650 | 0.0 | - |
| 3.8259 | 24700 | 0.0 | - |
| 3.8336 | 24750 | 0.0 | - |
| 3.8414 | 24800 | 0.0001 | - |
| 3.8491 | 24850 | 0.0 | - |
| 3.8569 | 24900 | 0.0 | - |
| 3.8646 | 24950 | 0.0 | - |
| 3.8724 | 25000 | 0.0 | - |
| 3.8801 | 25050 | 0.0 | - |
| 3.8879 | 25100 | 0.0 | - |
| 3.8956 | 25150 | 0.0001 | - |
| 3.9033 | 25200 | 0.0 | - |
| 3.9111 | 25250 | 0.0002 | - |
| 3.9188 | 25300 | 0.0001 | - |
| 3.9266 | 25350 | 0.0 | - |
| 3.9343 | 25400 | 0.0 | - |
| 3.9421 | 25450 | 0.0 | - |
| 3.9498 | 25500 | 0.0001 | - |
| 3.9576 | 25550 | 0.0 | - |
| 3.9653 | 25600 | 0.0 | - |
| 3.9730 | 25650 | 0.0001 | - |
| 3.9808 | 25700 | 0.0 | - |
| 3.9885 | 25750 | 0.0 | - |
| 3.9963 | 25800 | 0.0 | - |
| 4.0 | 25824 | - | 2.3576 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->