Edit model card

lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.3991
  • Accuracy: 0.4471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3892 1.0 341 3.4056 0.4544
1.3499 2.0 683 3.4531 0.4577
1.2427 3.0 1024 3.6711 0.4584
1.1231 4.0 1366 3.8000 0.4570
0.995 5.0 1707 3.9532 0.4552
0.8693 6.0 2049 4.0766 0.4526
0.7302 7.0 2390 4.1717 0.4501
0.6033 8.0 2732 4.2778 0.448
0.4825 9.0 3073 4.3415 0.4462
0.387 9.99 3410 4.3991 0.4471

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2

Finetuned
(591)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
    self-reported
    0.447