lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 4.3991
- Accuracy: 0.4471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3892 | 1.0 | 341 | 3.4056 | 0.4544 |
1.3499 | 2.0 | 683 | 3.4531 | 0.4577 |
1.2427 | 3.0 | 1024 | 3.6711 | 0.4584 |
1.1231 | 4.0 | 1366 | 3.8000 | 0.4570 |
0.995 | 5.0 | 1707 | 3.9532 | 0.4552 |
0.8693 | 6.0 | 2049 | 4.0766 | 0.4526 |
0.7302 | 7.0 | 2390 | 4.1717 | 0.4501 |
0.6033 | 8.0 | 2732 | 4.2778 | 0.448 |
0.4825 | 9.0 | 3073 | 4.3415 | 0.4462 |
0.387 | 9.99 | 3410 | 4.3991 | 0.4471 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3self-reported0.447