lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7173
- Accuracy: 0.7434
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3186 | 1.0 | 529 | 0.6640 | 1.2075 |
1.2869 | 2.0 | 1058 | 0.6686 | 1.1716 |
1.2221 | 3.0 | 1587 | 0.6729 | 1.1375 |
1.1692 | 4.0 | 2116 | 0.6770 | 1.1135 |
1.1179 | 5.0 | 2645 | 0.6808 | 1.0888 |
1.0551 | 6.0 | 3174 | 0.6846 | 1.0604 |
1.0184 | 7.0 | 3703 | 0.6893 | 1.0354 |
0.9519 | 8.0 | 4232 | 0.6929 | 1.0097 |
0.8969 | 9.0 | 4761 | 0.6963 | 0.9885 |
0.8428 | 10.0 | 5290 | 0.6993 | 0.9753 |
0.7945 | 11.0 | 5819 | 0.7055 | 0.9353 |
0.7459 | 12.0 | 6348 | 0.7097 | 0.9101 |
0.6852 | 13.0 | 6877 | 0.7145 | 0.8795 |
0.6452 | 14.0 | 7406 | 0.7182 | 0.8614 |
0.602 | 15.0 | 7935 | 0.7230 | 0.8327 |
0.5465 | 16.0 | 8464 | 0.7273 | 0.8036 |
0.5233 | 17.0 | 8993 | 0.7305 | 0.7916 |
0.4896 | 18.0 | 9522 | 0.7641 | 0.7349 |
0.4549 | 19.0 | 10051 | 0.7421 | 0.7390 |
0.42 | 20.0 | 10580 | 0.7173 | 0.7434 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3self-reported0.743