|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- itihasa |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: sanskrit-to-english |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: itihasa |
|
type: itihasa |
|
config: Itihasa |
|
split: test |
|
args: Itihasa |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 0.288 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sanskrit-to-english |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the itihasa dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.5134 |
|
- Bleu: 0.288 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| |
|
| 3.9554 | 1.0 | 4698 | 3.7250 | 0.3772 | 19.0 | |
|
| 3.8183 | 2.0 | 9396 | 3.6050 | 0.3216 | 19.0 | |
|
| 3.746 | 3.0 | 14094 | 3.5497 | 0.2743 | 19.0 | |
|
| 3.7183 | 4.0 | 18792 | 3.5229 | 0.2787 | 19.0 | |
|
| 3.7124 | 5.0 | 23490 | 3.5134 | 0.288 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.14.1 |
|
|