Edit model card

Chinese ALBERT

Model description

This is the set of Chinese ALBERT models pre-trained by UER-py, which is introduced in this paper. Besides, the models could also be pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.

You can download the model either from the UER-py Modelzoo page, or via HuggingFace from the links below:

Link
ALBERT-Base L=12/H=768 (Base)
ALBERT-Large L=24/H=1024 (Large)

How to use

You can use the model directly with a pipeline for text generation:

>>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
>>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
>>> unmasker = FillMaskPipeline(model, tokenizer)   
>>> unmasker("中国的首都是[MASK]京。")
    [
        {'sequence': '中 国 的 首 都 是 北 京 。',
         'score': 0.8528032898902893, 
         'token': 1266, 
         'token_str': '北'}, 
        {'sequence': '中 国 的 首 都 是 南 京 。',
         'score': 0.07667620480060577, 
         'token': 1298, 
         'token_str': '南'}, 
        {'sequence': '中 国 的 首 都 是 东 京 。', 
         'score': 0.020440367981791496, 
         'token': 691, 
         'token_str': '东'},
        {'sequence': '中 国 的 首 都 是 维 京 。', 
         'score': 0.010197942145168781,
         'token': 5335, 
         'token_str': '维'}, 
        {'sequence': '中 国 的 首 都 是 汴 京 。', 
         'score': 0.0075391442514956, 
         'token': 3745, 
         'token_str': '汴'}
    ]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import BertTokenizer, AlbertModel
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import BertTokenizer, TFAlbertModel
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Training data

CLUECorpusSmall is used as training data.

Training procedure

The model is pre-trained by UER-py on Tencent Cloud. We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.

Taking the case of ALBERT-Base

Stage1:

python3 preprocess.py --corpus_path corpora/cluecorpussmall_bert.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor albert 
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/albert/base_config.json \
                    --output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64

Stage2:

python3 preprocess.py --corpus_path corpora/cluecorpussmall_bert.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
                      --seq_length 512 --processes_num 32 --data_processor albert
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \
                    --config_path models/albert/base_config.json \
                    --output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_albert_base_seq512_model.bin-1000000 \
                                                          --output_model_path pytorch_model.bin

BibTeX entry and citation info

@article{lan2019albert,
  title={Albert: A lite bert for self-supervised learning of language representations},
  author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu},
  journal={arXiv preprint arXiv:1909.11942},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
Downloads last month
1,036
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using uer/albert-base-chinese-cluecorpussmall 2