|
--- |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: question-answering |
|
--- |
|
# Llama-mt-lora |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model is fine-tuned with LLaMA with 8 Nvidia A100-80G GPUs using 3,000,000 groups of conversations in the context of mathematics by students and facilitators on Algebra Nation (https://www.mathnation.com/). Llama-mt-lora consists of 32 layers and over 7 billion parameters, consuming up to 13.5 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively respond generation in a mathematical context. |
|
### Here is how to use it with texts in HuggingFace |
|
```python |
|
import torch |
|
import transformers |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
tokenizer = LlamaTokenizer.from_pretrained("Fan21/Llama-mt-lora") |
|
mdoel = LlamaForCausalLM.from_pretrained( |
|
"Fan21/Llama-mt-lora", |
|
load_in_8bit=False, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input} |
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].strip() |
|
instruction = 'write your instruction here' |
|
inputs = 'write your inputs here' |
|
output= evaluate(instruction, |
|
input=inputs, |
|
temperature=0.1,#change the parameters by yourself |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128,) |
|
``` |
|
|