|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.953125 |
|
- name: Recall |
|
type: recall |
|
value: 0.9588323353293413 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9559701492537314 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.965195246179966 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1913 |
|
- Precision: 0.9531 |
|
- Recall: 0.9588 |
|
- F1: 0.9560 |
|
- Accuracy: 0.9652 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 1.0033 | 0.7434 | 0.7957 | 0.7686 | 0.8060 | |
|
| 1.3714 | 3.12 | 500 | 0.5413 | 0.8534 | 0.8757 | 0.8644 | 0.8769 | |
|
| 1.3714 | 4.69 | 750 | 0.3792 | 0.9013 | 0.9162 | 0.9087 | 0.9219 | |
|
| 0.3763 | 6.25 | 1000 | 0.2743 | 0.9333 | 0.9431 | 0.9382 | 0.9457 | |
|
| 0.3763 | 7.81 | 1250 | 0.2404 | 0.9313 | 0.9439 | 0.9375 | 0.9495 | |
|
| 0.2026 | 9.38 | 1500 | 0.2479 | 0.9325 | 0.9409 | 0.9367 | 0.9431 | |
|
| 0.2026 | 10.94 | 1750 | 0.2001 | 0.9338 | 0.9499 | 0.9417 | 0.9559 | |
|
| 0.1349 | 12.5 | 2000 | 0.2102 | 0.9407 | 0.9499 | 0.9453 | 0.9571 | |
|
| 0.1349 | 14.06 | 2250 | 0.1961 | 0.9560 | 0.9603 | 0.9582 | 0.9648 | |
|
| 0.104 | 15.62 | 2500 | 0.1913 | 0.9531 | 0.9588 | 0.9560 | 0.9652 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.0 |
|
- Tokenizers 0.13.3 |
|
|