|
--- |
|
license: mit |
|
base_model: microsoft/layoutlm-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: layoutlm-funsd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlm-funsd |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0754 |
|
- Ignal: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} |
|
- Oise: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} |
|
- Overall Precision: 0.0 |
|
- Overall Recall: 0.0 |
|
- Overall F1: 0.0 |
|
- Overall Accuracy: 0.9670 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Ignal | Oise | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.7198 | 1.0 | 1 | 0.7152 | {'precision': 0.010416666666666666, 'recall': 0.09090909090909091, 'f1': 0.018691588785046728, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0052 | 0.0435 | 0.0093 | 0.5024 | |
|
| 0.7121 | 2.0 | 2 | 0.7152 | {'precision': 0.010416666666666666, 'recall': 0.09090909090909091, 'f1': 0.018691588785046728, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0052 | 0.0435 | 0.0093 | 0.5024 | |
|
| 0.7191 | 3.0 | 3 | 0.4802 | {'precision': 0.045454545454545456, 'recall': 0.09090909090909091, 'f1': 0.060606060606060615, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0222 | 0.0435 | 0.0294 | 0.9245 | |
|
| 0.4799 | 4.0 | 4 | 0.3268 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9646 | |
|
| 0.3263 | 5.0 | 5 | 0.2246 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.2269 | 6.0 | 6 | 0.1598 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.1625 | 7.0 | 7 | 0.1227 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.1246 | 8.0 | 8 | 0.1030 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.1042 | 9.0 | 9 | 0.0937 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.0942 | 10.0 | 10 | 0.0892 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.0888 | 11.0 | 11 | 0.0861 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.0834 | 12.0 | 12 | 0.0832 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.0768 | 13.0 | 13 | 0.0805 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.0745 | 14.0 | 14 | 0.0778 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
| 0.071 | 15.0 | 15 | 0.0754 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.9670 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|