Edit model card

speechless-thoughts-mistral-7b-v1.0

code

speechless-thoughts-mistral-7b-v1.0 is fine-tuned as a baseline of the speechless-sparsetral-16x7b-MoE.

learning_rate=2e-4
lora_r=64
lora_alpha=16
model_max_length=8192

The specific datasets (speechless-thoughts-252k) are as follows:

  • jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
  • Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
  • garage-bAInd/Open-Platypus: 100%, 24,926 samples.
  • WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
  • TokenBender/python_eval_instruct_51k: β€œpython” in output .40,309 samples
  • Spider: 8,659 samples
  • codefuse-ai/Evol-Instruction-66k: 100%, 66,862 samples

Alpaca Prompt Format

### Instruction:
<instruction>
### Response:

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name_or_path="uukuguy/speechless-thoughts-mistral-7b-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=True).eval()

  system = ""Below is an instruction that describes a task.\nWrite a response that appropriately completes the request.\n\n""
  prompt = f"{system}\n\n### Instruction:\n{instruction}\n\n### Response:"

  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
  pred = model.generate(**inputs, max_length=4096, do_sample=True, top_k=50, top_p=0.99, temperature=0.9, num_return_sequences=1)
  print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

HumanEval

Metric Value
humaneval-python

lm-evaluation-harness

{'ARC (acc_norm)': ,
'HellaSwag (acc_norm)': ,
'MMLU (acc)': ,
'TruthfulQA (mc2)': ,
'Winoground (acc)': ,
'GSM8K (acc)': ,
'DROP (f1)': ,
'Open LLM Score': }

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 59.36
ARC (25-shot) 58.53
HellaSwag (10-shot) 81.25
MMLU (5-shot) 54.59
TruthfulQA (0-shot) 48.09
Winogrande (5-shot) 78.14
GSM8K (5-shot) 35.18
Downloads last month
87
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for uukuguy/speechless-thoughts-mistral-7b-v1.0

Quantizations
2 models

Datasets used to train uukuguy/speechless-thoughts-mistral-7b-v1.0

Spaces using uukuguy/speechless-thoughts-mistral-7b-v1.0 5

Evaluation results