metadata
library_name: transformers
tags:
- mergekit
- merge
- llama
base_model:
- v000000/L3.1-8B-RP-Test-003-Task_Arithmetic
- v000000/L3.1-Niitorm-8B-t0.0001
- Sao10K/L3.1-8B-Niitama-v1.1
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- arcee-ai/Llama-Spark
- v000000/L3.1-8B-RP-Test-002-Task_Arithmetic
- grimjim/Llama-3-Instruct-abliteration-LoRA-8B
model-index:
- name: L3.1-Storniitova-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 78.17
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 13.29
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.96
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.84
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
Llama-3.1-Storniitova-8B
Storniitova-8B is a RP/Instruct model built on the foundation of Llama-3.1-SuperNova-Lite, which is distilled from the 405B parameter variant of Llama-3.1
By only changing the vector tasks, I attempt to retain the full 405B distillation while learning roleplaying capabilties.
(GGUF) mradermacher quants:
(GGUF) QuantFactory quants:
merge
This is a merge of pre-trained language models created using mergekit and other proprietary tools.
Merge Details
Merge Method
This model was merged using the SLERP, Task_Arithmetic and NEARSWAP merge method.
Models Merged
The following models were included in the merge:
- v000000/L3.1-Niitorm-8B-t0.0001
- akjindal53244/Llama-3.1-Storm-8B
- arcee-ai/Llama-Spark
- arcee-ai/Llama-3.1-SuperNova-Lite
- v000000/L3.1-8B-RP-Test-003-Task_Arithmetic
- Sao10K/L3.1-8B-Niitama-v1.1 + grimjim/Llama-3-Instruct-abliteration-LoRA-8B
- v000000/L3.1-8B-RP-Test-002-Task_Arithmetic + grimjim/Llama-3-Instruct-abliteration-LoRA-8B
Recipe
The following YAML configuration was used to produce this model:
#Step1 - Add smarts to Niitama with alchemonaut's algorithm.
slices:
- sources:
- model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
layer_range: [0, 32]
- model: akjindal53244/Llama-3.1-Storm-8B
layer_range: [0, 32]
merge_method: nearswap
base_model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
parameters:
t:
- value: 0.0001
dtype: bfloat16
out_type: float16
#Step 2 - Learn vectors onto Supernova 0.4(Niitorm)
models:
- model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
weight: 1.0
- model: v000000/L3.1-Niitorm-8B-t0.0001
parameters:
weight: 0.4
merge_method: task_arithmetic
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
normalize: false
dtype: float16
#Step 3 - Fully learn vectors onto Supernova 1.25(Niitorm)
models:
- model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
weight: 0.0
- model: v000000/L3.1-Niitorm-8B-t0.0001
parameters:
weight: 1.25
merge_method: task_arithmetic
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
normalize: false
dtype: float16
#Step 4 - Merge checkpoints and keep output/input Supernova heavy
#Merge with a triangular slerp from sophosympatheia.
models:
- model: v000000/L3.1-8B-RP-Test-003-Task_Arithmetic
merge_method: slerp
base_model: v000000/L3.1-8B-RP-Test-002-Task_Arithmetic+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
# This model needed some abliteration^
parameters:
t:
- value: [0, 0, 0.3, 0.4, 0.5, 0.6, 0.5, 0.4, 0.3, 0, 0]
dtype: float16
SLERP distribution used to smoothly blend the mostly Supernova base with the roleplay vectors:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.06 |
IFEval (0-Shot) | 78.17 |
BBH (3-Shot) | 30.81 |
MATH Lvl 5 (4-Shot) | 13.29 |
GPQA (0-shot) | 5.26 |
MuSR (0-shot) | 9.96 |
MMLU-PRO (5-shot) | 30.84 |