metadata
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 38.0664
t5-small-finetuned-samsum
This model is a fine-tuned version of t5-small on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 1.8225
- Rouge1: 38.0664
- Rouge2: 16.3092
- Rougel: 31.9662
- Rougelsum: 35.0264
- Gen Len: 14.4976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.0656 | 0.9992 | 920 | 1.8225 | 38.0664 | 16.3092 | 31.9662 | 35.0264 | 14.4976 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1