vickyjm commited on
Commit
61ed25a
1 Parent(s): 3a3b3ac

Changing learning rate

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 274.97 +/- 13.75
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 214.15 +/- 72.82
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6847d747a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6847d74830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6847d748c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6847d74950>", "_build": "<function ActorCriticPolicy._build at 0x7f6847d749e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6847d74a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6847d74b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6847d74b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6847d74c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6847d74cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6847d74d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6847daff60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 802816, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651713582.340361, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe2jwsQ54/c7z8PVE5Bb8WMJk9Xj8OPQAAAAAAAAAAWsuvPW1oTj4kh7m9fHZ5vnTVvL3y9ya9AAAAAAAAAADNDBQ8qGCDP2+DmL13Keu+BM6Hu/Ayb70AAAAAAAAAABqPiz171qu6KlkDOFHo4DJoybC6jnwWtwAAgD8AAIA/AOCnO308Bz7rGpW8GTOZvr7dCr0b/TW8AAAAAAAAAAAa45k9IksNPiLIIj3NGWi+f4gVvSCExLwAAAAAAAAAANrIB76HelY+DquRPmLpib50b3s9iflAPQAAAAAAAAAAmqltPU9oPLz3l4g838SLPA7vtD2FqmS9AACAPwAAgD+NYuI9oZn2PrMi7b4CVIy+Kl2iPMuOq74AAAAAAAAAAIBMcT2ksGs4ZsYzM5sHZK5qUQi6tSPPswAAgD8AAIA/cwuFvUbpgz+UpRy+W37ovvdb+r1z2Wu9AAAAAAAAAADm2L49Re2wPPCeL71u5yu+aQt/vfi5Ez0AAAAAAAAAAOYxTT2ueZS6OVw8uo/ALbWvOhe6wyNaOQAAgD8AAIA/Goolvbiuwz2syBs+LCibvqJBhD1d8Fm9AAAAAAAAAADamoQ9ey6Hul/nIzfmvz4y8Yc/O9+AP7YAAIA/AACAP80A+D32nF87K1FLvckeD7yvYgU9Ye0AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBgg0YQQckCUhpRSlIwBbJRNHQGMAXSUR0Ci3+r/82rGdX2UKGgGaAloD0MIprc/F41sbkCUhpRSlGgVTQIBaBZHQKLgcPz4DcN1fZQoaAZoCWgPQwgIzEOmfIAiQJSGlFKUaBVLw2gWR0Ci4IOZ9d/sdX2UKGgGaAloD0MI+WhxxjDtckCUhpRSlGgVS+ZoFkdAouCK4UeuFHV9lChoBmgJaA9DCNV46SYx325AlIaUUpRoFU0AAWgWR0Ci4I704BFNdX2UKGgGaAloD0MI7bYLzXUmc0CUhpRSlGgVTQMBaBZHQKLg3CtzS1F1fZQoaAZoCWgPQwjqCUs8IM9sQJSGlFKUaBVL+mgWR0Ci4QcFhXr/dX2UKGgGaAloD0MIoRABhxCtckCUhpRSlGgVTRYBaBZHQKLhhTQVsUJ1fZQoaAZoCWgPQwhnCp3X2BpwQJSGlFKUaBVL5GgWR0Ci4Zg+IMz/dX2UKGgGaAloD0MIyf/k716MckCUhpRSlGgVS/JoFkdAouG7BEa2nnV9lChoBmgJaA9DCOnxe5v+C3BAlIaUUpRoFU0bAWgWR0Ci4dHCwbEQdX2UKGgGaAloD0MIf/W4bzWcckCUhpRSlGgVTT0BaBZHQKLh3ky1uzh1fZQoaAZoCWgPQwjtuUxNgj1xQJSGlFKUaBVNFgFoFkdAouJsfFJg9nV9lChoBmgJaA9DCPnzbcES+XBAlIaUUpRoFU0pAWgWR0Ci4qtKqXF+dX2UKGgGaAloD0MITn0geScockCUhpRSlGgVTU4BaBZHQKLi3F+/gzh1fZQoaAZoCWgPQwi+F1+0x1pvQJSGlFKUaBVNLAFoFkdAouPy2a2F4HV9lChoBmgJaA9DCA8pBkg0jWxAlIaUUpRoFUv7aBZHQKLkMV1wHZ91fZQoaAZoCWgPQwjcuMX8XPJxQJSGlFKUaBVNAgFoFkdAouTQdELH/HV9lChoBmgJaA9DCMhhMH/FPnJAlIaUUpRoFUv1aBZHQKLlBL127nR1fZQoaAZoCWgPQwio4zEDFVZyQJSGlFKUaBVNFQFoFkdAouVFfb9IgHV9lChoBmgJaA9DCFgczvxqMXFAlIaUUpRoFUvdaBZHQKLlSu2Zy+91fZQoaAZoCWgPQwirsu+KoFJzQJSGlFKUaBVL4mgWR0Ci5XOLaVUudX2UKGgGaAloD0MI0zB8RExZbkCUhpRSlGgVTQoBaBZHQKLlk1yeZoh1fZQoaAZoCWgPQwjIXYQpithwQJSGlFKUaBVNLwFoFkdAouXDK7qY7nV9lChoBmgJaA9DCE8hV+pZ6W9AlIaUUpRoFUvnaBZHQKLl0RoRIz51fZQoaAZoCWgPQwjWbrvQXOtuQJSGlFKUaBVNPgFoFkdAouX6fvnbI3V9lChoBmgJaA9DCCS2uwdoiG5AlIaUUpRoFUv/aBZHQKLmCghbGFV1fZQoaAZoCWgPQwjtRElIpIE5QJSGlFKUaBVLxGgWR0Ci5j8hkiD/dX2UKGgGaAloD0MIdqp8z0h4ckCUhpRSlGgVTRMBaBZHQKLmaD9Oymh1fZQoaAZoCWgPQwiP3nAfOfBwQJSGlFKUaBVNBgFoFkdAoubJ7zCk43V9lChoBmgJaA9DCLSR66bUFnFAlIaUUpRoFU0UAWgWR0Ci50CCz1K5dX2UKGgGaAloD0MIxCPx8nTRVUCUhpRSlGgVS6VoFkdAouehZyMkyHV9lChoBmgJaA9DCFyQLcvXoFFAlIaUUpRoFUvTaBZHQKLnrLf1pTN1fZQoaAZoCWgPQwiIE5hOa6BxQJSGlFKUaBVNCQFoFkdAouhQDJU5uXV9lChoBmgJaA9DCFFmg0wyJnNAlIaUUpRoFUv2aBZHQKLozruYx+N1fZQoaAZoCWgPQwg7jbRU3nhxQJSGlFKUaBVL5GgWR0Ci6OdYwIt2dX2UKGgGaAloD0MID9JT5JAFb0CUhpRSlGgVS/VoFkdAouljRjSXt3V9lChoBmgJaA9DCPD49q4BNXBAlIaUUpRoFU0JAWgWR0Ci90SQ5myxdX2UKGgGaAloD0MIXoWUn9S3cUCUhpRSlGgVTQQBaBZHQKL3dRsuWbB1fZQoaAZoCWgPQwimYmNeR3pxQJSGlFKUaBVL52gWR0Ci93o5xR2sdX2UKGgGaAloD0MIISI17WL+ckCUhpRSlGgVS9xoFkdAovf6++M6zXV9lChoBmgJaA9DCJoHsMjvVHFAlIaUUpRoFU0pAWgWR0Ci+BgT7EYPdX2UKGgGaAloD0MIxR1v8hu5ckCUhpRSlGgVTRgBaBZHQKL4IGh24d91fZQoaAZoCWgPQwhO1NLcijhvQJSGlFKUaBVNIAFoFkdAovgv2K2rn3V9lChoBmgJaA9DCJMANbVs+nBAlIaUUpRoFU1KAWgWR0Ci+C5QpF1CdX2UKGgGaAloD0MIzZTW3xJOcECUhpRSlGgVTSkBaBZHQKL4wx46fap1fZQoaAZoCWgPQwjLK9fbprJyQJSGlFKUaBVNAgFoFkdAovkGepXIVHV9lChoBmgJaA9DCF9AL9y5fG9AlIaUUpRoFUvqaBZHQKL5EdbxEv11fZQoaAZoCWgPQwiTcCGPYF9tQJSGlFKUaBVNBwFoFkdAovltaSs8xXV9lChoBmgJaA9DCLgiMUFN/HFAlIaUUpRoFUv8aBZHQKL55pxFRYR1fZQoaAZoCWgPQwiKlGbzOCFzQJSGlFKUaBVL3WgWR0Ci+e+717IDdX2UKGgGaAloD0MIqOUHrnIMbkCUhpRSlGgVTQABaBZHQKL6ZJAdGRV1fZQoaAZoCWgPQwhBYyZRb7RxQJSGlFKUaBVL6mgWR0Ci+ou27Wd3dX2UKGgGaAloD0MIICbhQh56cUCUhpRSlGgVS+doFkdAovrw5Jbt7nV9lChoBmgJaA9DCI+LahHRUW9AlIaUUpRoFUvgaBZHQKL7rg5zYEp1fZQoaAZoCWgPQwju68A5Iz1yQJSGlFKUaBVNDgFoFkdAovvXFHavinV9lChoBmgJaA9DCOsB85Cp/XBAlIaUUpRoFU0eAWgWR0Ci/B/Q0GeMdX2UKGgGaAloD0MIda29T9UgcUCUhpRSlGgVTQoBaBZHQKL8ahEBsAN1fZQoaAZoCWgPQwhtdM5PMY5yQJSGlFKUaBVNFQFoFkdAovx393r2QHV9lChoBmgJaA9DCC2Xjc45QHFAlIaUUpRoFUvoaBZHQKL8j2RJVbR1fZQoaAZoCWgPQwhFvHX+7c1yQJSGlFKUaBVNEAFoFkdAovyUeU6gd3V9lChoBmgJaA9DCPEQxk/js3BAlIaUUpRoFUvoaBZHQKL8z2icoYx1fZQoaAZoCWgPQwgujzUjg8VxQJSGlFKUaBVNKAFoFkdAovzZUgjhUHV9lChoBmgJaA9DCO85sBwhS3FAlIaUUpRoFU0AAWgWR0Ci/TD+aScLdX2UKGgGaAloD0MIPQ6D+St7VUCUhpRSlGgVS6hoFkdAov1bAFgUlHV9lChoBmgJaA9DCOKuXkXGEHBAlIaUUpRoFUv8aBZHQKL9gQ5FPSF1fZQoaAZoCWgPQwhsy4Cz1FlwQJSGlFKUaBVL/mgWR0Ci/opI1+AmdX2UKGgGaAloD0MIAMeePde3ckCUhpRSlGgVTTQBaBZHQKL+8oScslN1fZQoaAZoCWgPQwivCWmNAVxxQJSGlFKUaBVNOgFoFkdAov8cORT0hHV9lChoBmgJaA9DCFOUS+OXumxAlIaUUpRoFU0VAWgWR0Ci/5jynUDudX2UKGgGaAloD0MIbNECtK1IbUCUhpRSlGgVS/hoFkdAov/Od/axo3V9lChoBmgJaA9DCKZ7ndTXZHJAlIaUUpRoFUvXaBZHQKL/9bfxc3V1fZQoaAZoCWgPQwi0yeGTTu9xQJSGlFKUaBVNAAFoFkdAowBcglnh9HV9lChoBmgJaA9DCIqvdhRnLG5AlIaUUpRoFUvraBZHQKMAa+yquKZ1fZQoaAZoCWgPQwjc2OxIdXdtQJSGlFKUaBVNFAFoFkdAowB1mvnr6nV9lChoBmgJaA9DCAvxSLw8WXFAlIaUUpRoFU0NAWgWR0CjANcdo372dX2UKGgGaAloD0MIiNnLttO6R0CUhpRSlGgVS8toFkdAowD794u9OHV9lChoBmgJaA9DCKZ7ndQXdXNAlIaUUpRoFU0DAWgWR0CjARhYNiH7dX2UKGgGaAloD0MIINEEiljKcECUhpRSlGgVTRsBaBZHQKMBOMsH0K91fZQoaAZoCWgPQwh0YDlChoJyQJSGlFKUaBVL8mgWR0CjAWfcWTHKdX2UKGgGaAloD0MIPZ0rSgkzbkCUhpRSlGgVTToBaBZHQKMCZftQbdd1fZQoaAZoCWgPQwiez4B6swVzQJSGlFKUaBVL7WgWR0CjAv3yAhB7dX2UKGgGaAloD0MIEp87wf7rUkCUhpRSlGgVS79oFkdAowMAuK4x13V9lChoBmgJaA9DCKGd0yzQHG9AlIaUUpRoFU0LAWgWR0CjAyFQMx46dX2UKGgGaAloD0MIPKBsyhW4cUCUhpRSlGgVTX4BaBZHQKMDLLlmvnt1fZQoaAZoCWgPQwhFSUikrQdyQJSGlFKUaBVL92gWR0CjA74tpVS5dX2UKGgGaAloD0MIGM+goT+XcECUhpRSlGgVTS8BaBZHQKMES5wwTM91fZQoaAZoCWgPQwgZ/tMNVJBwQJSGlFKUaBVL6mgWR0CjBFvuogmrdX2UKGgGaAloD0MIY/IGmLlCcUCUhpRSlGgVS/toFkdAowSYzBRAKXV9lChoBmgJaA9DCBToE3kSynBAlIaUUpRoFUvyaBZHQKME6/xDst11fZQoaAZoCWgPQwjJBWfw9y5xQJSGlFKUaBVL3mgWR0CjBPxRuTA4dX2UKGgGaAloD0MIu2QcI9kOckCUhpRSlGgVTSsBaBZHQKMFBs67ulZ1fZQoaAZoCWgPQwhQGf8+o1VyQJSGlFKUaBVNKAFoFkdAowVsW69TP3V9lChoBmgJaA9DCPxUFRrIe3BAlIaUUpRoFUvsaBZHQKMFbuBtk4F1fZQoaAZoCWgPQwj6Cz1idGRxQJSGlFKUaBVNDwFoFkdAowWIRwqAjXV9lChoBmgJaA9DCCXqBZ9mYHBAlIaUUpRoFU0IAWgWR0CjBYiOearndX2UKGgGaAloD0MIl3SUg9lmb0CUhpRSlGgVS/VoFkdAowZx2U0N0HV9lChoBmgJaA9DCI+JlGazcHNAlIaUUpRoFUvjaBZHQKMGsF6Avtd1fZQoaAZoCWgPQwg6BfnZyPpvQJSGlFKUaBVNAAFoFkdAowdYGUwBYHV9lChoBmgJaA9DCMU4fxPKUnFAlIaUUpRoFU0RAWgWR0CjB5dycTakdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6847d747a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6847d74830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6847d748c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6847d74950>", "_build": "<function ActorCriticPolicy._build at 0x7f6847d749e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6847d74a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6847d74b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6847d74b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6847d74c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6847d74cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6847d74d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6847daff60>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAUP5XxJT/bziFzeur8lbUhoTWvRgYgGMohCJ2gfDPTVriOxkmfE37bd200xe1AKexQgHGDBTKkZdv4341Yh7PLqD3Z7NNdI4XoM2STARslaQcUADOjUfPJY8WDpV6adk8AuU89/b7kvgpn7RCOGdILSNUbOr8c2FPcw1QU0IQT6zktr31Fh+ZLmzL+XTrLeA2MMEEIqP54NGsxRMLDHpfKEbO4TKcmmnggBIL0RKxNGM/mNmAZ4sQWXj1SbjQsYDDLITpg/qWZygGW6JWPByOoAzguk3Qm5dXM7iqpYxY9IKVIZB1z/Ei6i0Lxx+eiqlxMG6TAy+reUNkVdfliC3U1/FI6rEgccC8JfPdrqwiluTLlxvDBT3H+UDbWDKy4+hKk+fbjIlfB6cdjo+Kkqj/dQoMz0J0tirTppJaO/sKPGHmf1FY6USRQi0BKKP0mLqI6iQKVItQMh+ibfkmeugReMFSBzQDXR1TjKIDzE+tneMK19Kap2mA1xdc/KaaVZPyeM/L7rngxqt4cc84dmtFefIM59QrCdKeZ1z/4jaoZB7ulqmISIXxMNT1ICK+UI+PH+E28qXsoSElungeFtgRTWRwtU2J0G1BGDzceJiGpPI26Fbd9B9zPjcw3WcklNoXCy1vB0GT4srm3pJMH+seIa5BGSLRdlkP/4KKOddQ+I4NiT6FMBtppxXYZh6nBZRxMM8tvJ6JQ9g1X75tkd+k1Ur4RU/rx0SD8Yud7VfqRfUvXqM0RRADn8tgcHxdq4u7KhIVpbWcOtzK0UlY6znCZ1LM2sJ/Aa9xAPYcva0cbekj5BaOyo93amT5wHhQa5DN5lKItZz3VMsSsaFJyw3zv8dXYk4RIleyu6fhVXJ6aYoKAXgTxklNdRJWdr4LEYDNnD67viuwy/D8TYXQ+XiOyN7sj7d0UNm0kM8R95dFE4bwBv9f8rItWTM/nFlqHgn8FeHG4WUl0mCb4KJr9pu0kk/GZGpr+UYeo9AjaSULnnP6qgKeVEW1NaBEl272mMiSHTFEtYWL3T58HRTXvtWeSFP3sAewDbQwLia/4pFy0uQHVLh3AEPLW16jEpe9rsSosbYgpGajfHRtjgIO7Y+4gPYoMK+3MRrGP1TKNP5kTaQVUrqqaxyxK3bS6jE48TOykKwh4F6v/oT8wyScRF682y8nVXZkFBK+Q1iv9AWb38t/Vzh2w4O5sB9Zc3sIfM7I8zjY3txwG2ch8Pd5q9J/hGNScbJroTDoWzzFZBcCJsfFE4XkSvXl+JyRhSqS0PBUy8XdrzyilGZyTMIuJddGX1o3IrhMQQ4odDKD/vFxKG/7WejU1hA7z7GtKL5FNGeHhfOTMQ/wkyNm7rzoVevMZIcYjd+pcQkNzTwfwlxpVoI2Bx7nevNr63ZRbK7F1DRpRFzI151lnOdfg8mtmhlyhEHVJkf8jt14EsrA+Z9lFgLeb/LfgaCINBI4gRtDkOuWbNO3NVe6/o9dX2TUoCBmv7TzYIJ/GmYkJ8MlA0UpnjO6526VlOx2E9vwuHbq2h92OkA8r/niRBfSL/a8x06N6C3vGxOjjIoOUaVlG4TIjbZ0QF1wXtU7HI9H/AGCZ9ZC9Yc15BZJiZKi4dqgVmI86PHoJ9HHbuUrqlv/K1EBv29OJ9h/LDNjQhzf57BLnSoVwdYWsD8YNZW7giCxFqAVVLZfFpWaOisD0EJNX7+w5D1AskOaUmweJSNr+/ns/fOcBaBPgaam3ZI4BWVUQXVDQ7sewyClp9JTSFTZYonJcCybaaJRJRNf6Cfqk4kW5aFbvpnKMM65tm1Y3U4FM77l7RTcktMeebR40HpqvTjQ2G+m5J7muwd55uIohELyaX8+4Sbbi8Zq6qCNzrlNi1Fhj6f/JT4dhbOGyvsn5NbKRVxz0H3+FxR0tIdBZsbjlIXyoRW+rn+Yej8gvKFd7flb+jFcI7OhbQL7+vVy40bG8tihdwPF9Anf9g5Q6vtaA8xr/oHC232xFFib1MjJFJFJA2hzKH9uB/suKnsRQRATniTN+EPyK07akUARohL/QjwYowcvQlSOLH/ZV2OMrhy1R/K+rYgkJByQFQ+KtNkjbKKyyTeJ6IEltL7f6T3co3KwVtxjjpwSFRX3G+S7MeN296kZdeCJ1HbAgL+QmeLHSTjc9r6O9gzLrbFWKc9MyVfLKoHARf4/d21n5826Vq7dp/zU7PDpYopoH/LLOFo7h48OyKCO1SCFtZPEYTbXWmrUWSL0i59wl5mOGmAlyjRlXdZwbELsAEOKWG53rcqknle2NAtsBN898x/f4Q9rE9TKECNef8cxn/6NmvCer9F8MPF798OTX8dK+4I7ryc1vCVeyrp6j5M3yWs/QTWINMadoF+4M7tTm+aSWwD7hzZyfLE0rnEaXxpSJfKSfypBtR8H4aRJcC+lqaIf1ev8o7cLP+fr0GE5Z6qGTphHFiV8txacUDJutgxTuDhoQUUodym7vFN32wZ8s6wBbcRWQGGom1K0f5PtKSsbXvW9acUVQMEl+tTMW/LrwPggAOIeQD8ijCUDGMxWIqA0QZspYVlBt2pEKAk4jT4a2q6IJhsEJhmSMoqOgJi4Z1l/J8exyJtdkNl3SiS2FY3tjbEH6iairpu/h69H3hVKWdufh9voNsG78S3EscCGCsqM2EnBGNL/jJXDyWYFJ2tE55ScVZY9bP9evN0kFoLjPCGzpJnGTNDGeAYFIRJj4nkr/ksG5ef8zGayvsYcTOPM3WNJRetWKBj+XlOhbPy1Y5H0KFgcRSUZBT0zgwLUu5V6W6ve3zbJL2iHB0yPalYEEcx8PzM3EPxVOJ80CXi8Z/52KXa+vmjtwDeD2mNX9XbqPpDwHxGpgxiVI3jin+I9pg4znrNYN9ell2dt3ZEV6SKnxsz9V7xw9VfJV9DEn5PX5eY+9vNsf1mdRXOa5ID25l4MjP3wah7wG6wnUOuI5A5k0HIeAE1GuYvb84s/NAwBf3KCxUVOvVXLOZBZY0vYm/o4lKi5eVcG6+yAxmkTdUtv98dnhCYd7e8xa55jXgSd6yQUmVtdK6dTjy/fPDNoKa8Sg3sG12otDJVGxSpAbg7jeGP5xzP++1zOXODcOYDEGVhA5nrKp9qMxIy6+ASCYXyKQsn7C224/s2a60Fq8Tvg6/RML2y5wPZA8AFZra5X1VSilSGd0Mhrj2N45RmxRDghla4452BDGV7Jl8p1z2r6wNtNuna9t7TsMVPIdQKhYu8Wk334/kZt8wUkffbHQIug4AuOFb5M+ZDuqvAkTXwt/DS2mQVMht710rcdyfN81Hma6smID5G2rDR0p+xMJjd+I0jslGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNwAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651719085.3405986, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMO/73RCkU/N6c4Pf5JAL9Z56y8OQe0PAAAAAAAAAAALWEYvjX3RT6quyE95ggbvgQTGzw6wwG9AAAAAAAAAAAaqYq9HxXluSRHnTzN8h48w6KaO+4tCz0AAIA/AACAPybuDz50XYg+Np6mPb5Rgr6HtRE99oW3PAAAAAAAAAAArah5PsZFBT8jylK9do2PviSMED0Sc7u9AAAAAAAAAABgfh6+u7PDPnoN3D2pVHq+v6AQPe8CEz0AAAAAAAAAAFZ7hz6f+Mc8Lo22unv0WLlocl4+q2zyOQAAgD8AAIA/TSRbvXtumLpVfq62q44NskTUvTqi2cY1AACAPwAAgD+aU128gEeyP1pULb9kkdS+3YxdPGsd5z0AAAAAAAAAAFO4n76lmik//jLuvqMsG78X5YW+4B8gvgAAAAAAAAAAjbjYPofYgT6qZ1u9RxaBvvewCz1IItq8AAAAAAAAAAArHaO+jPk4P1Vkdr2BYcu+LFkEvm/6LrwAAAAAAAAAAMAE7r00Va8++4xdPkGCi75z/lQ9gJoaPQAAAAAAAAAAAADYPa7ZiLpWtQO23CjmsBm3xDnriyI1AAAAAAAAgD+mVyq+SX9PPYenhT05Ic69rjw5u0xQIb0AAAAAAAAAAM3IyD1m66I/WvUaPy8F/b7zQ2A9GJ0WPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWBzO/OrCbUCUhpRSlIwBbJRNEwGMAXSUR0C9he02cawVdX2UKGgGaAloD0MIjbgANIqYcECUhpRSlGgVS/9oFkdAvYz34h2W6nV9lChoBmgJaA9DCHldv2A3EWFAlIaUUpRoFU3oA2gWR0C9jP1NlAeJdX2UKGgGaAloD0MIOxqH+t1VcUCUhpRSlGgVS/toFkdAvY0btdAxBXV9lChoBmgJaA9DCFmFzQAX7CjAlIaUUpRoFUv8aBZHQL2NLLaEi+t1fZQoaAZoCWgPQwhCeoocomtxQJSGlFKUaBVNQwFoFkdAvY02XWvr4XV9lChoBmgJaA9DCKsJou6DwGFAlIaUUpRoFU3oA2gWR0C9jZKMNtqIdX2UKGgGaAloD0MI/WZiupBnbkCUhpRSlGgVTRMBaBZHQL2OcEPDpC91fZQoaAZoCWgPQwjXT/9Z8zVrQJSGlFKUaBVNwwFoFkdAvY5vzDn/1nV9lChoBmgJaA9DCJaUu8/xGHBAlIaUUpRoFU1OAWgWR0C9jn0P6KtQdX2UKGgGaAloD0MIFEGch5OcbkCUhpRSlGgVTQMBaBZHQL2OgK8cuJ11fZQoaAZoCWgPQwh3o4/5QCtwQJSGlFKUaBVL/WgWR0C9jw5j6N2ldX2UKGgGaAloD0MIb38uGrKPbUCUhpRSlGgVTVUBaBZHQL2PE3iaRZF1fZQoaAZoCWgPQwjt8q0Pa2dyQJSGlFKUaBVNkQFoFkdAvY9H7rLQonV9lChoBmgJaA9DCD3wMVhxShpAlIaUUpRoFUvTaBZHQL2PSAPd2xJ1fZQoaAZoCWgPQwhdqPxruQVxQJSGlFKUaBVL7mgWR0C9j6Wa6STydX2UKGgGaAloD0MIWwcHe5M8akCUhpRSlGgVTTABaBZHQL2Pvz3AVO91fZQoaAZoCWgPQwgJjPUNTEJvQJSGlFKUaBVNDAFoFkdAvY/JcophF3V9lChoBmgJaA9DCNifxOfObm5AlIaUUpRoFU1GAWgWR0C9kDVV94NadX2UKGgGaAloD0MIYmafx6gCbUCUhpRSlGgVTScBaBZHQL2QSFnZkCp1fZQoaAZoCWgPQwj2CgvuByNcQJSGlFKUaBVN6ANoFkdAvZCT9tMwlHV9lChoBmgJaA9DCKa0/pYAAW1AlIaUUpRoFU0vAWgWR0C9kMIjKPn0dX2UKGgGaAloD0MI6BTkZyOyakCUhpRSlGgVTXkBaBZHQL2Q44VARkF1fZQoaAZoCWgPQwgiUtMupuEgwJSGlFKUaBVL6mgWR0C9kOitJWeZdX2UKGgGaAloD0MIFt16TY81b0CUhpRSlGgVS/1oFkdAvZEoj2SMcnV9lChoBmgJaA9DCKa3PxcNGSjAlIaUUpRoFU0DAWgWR0C9kTRi1AqvdX2UKGgGaAloD0MIOsssQrHtbkCUhpRSlGgVTRABaBZHQL2RR61b7j11fZQoaAZoCWgPQwgd5WA2ASJrQJSGlFKUaBVNCwFoFkdAvZHOWBz3iHV9lChoBmgJaA9DCJgYy/RLVBTAlIaUUpRoFUv6aBZHQL2R2NkvsZ51fZQoaAZoCWgPQwgKZHYWvZNwQJSGlFKUaBVNAwFoFkdAvZHuxW1c+3V9lChoBmgJaA9DCIGyKVf4fm9AlIaUUpRoFU0jAWgWR0C9kg12NedDdX2UKGgGaAloD0MIB7KeWv1LcECUhpRSlGgVTSoBaBZHQL2SpPWxyGV1fZQoaAZoCWgPQwj7eVORykdwQJSGlFKUaBVNRAFoFkdAvZMUxL0z03V9lChoBmgJaA9DCG9lic7ycXBAlIaUUpRoFUv/aBZHQL2TKVclgMN1fZQoaAZoCWgPQwhJnYAmQn1uQJSGlFKUaBVNJgFoFkdAvZM0Pz4DcXV9lChoBmgJaA9DCPUOt0ODVHFAlIaUUpRoFUv6aBZHQL2TdngYP5J1fZQoaAZoCWgPQwjQKF36lyRvQJSGlFKUaBVNBgFoFkdAvZP0p5NXYHV9lChoBmgJaA9DCDFD44kgHiBAlIaUUpRoFU0CAWgWR0C9lAGyLQ5WdX2UKGgGaAloD0MIbsFSXcBJbkCUhpRSlGgVTQUBaBZHQL2Ush9LHuJ1fZQoaAZoCWgPQwhz2eicnw5tQJSGlFKUaBVNAQFoFkdAvZTONzbN8nV9lChoBmgJaA9DCCk8aHZdmW1AlIaUUpRoFU1TAWgWR0C9lNeIZZSvdX2UKGgGaAloD0MI1xcJbblpa0CUhpRSlGgVTbQBaBZHQL2U98Kohpx1fZQoaAZoCWgPQwgL8N3mjfdtQJSGlFKUaBVNLgFoFkdAvZV+j9GZu3V9lChoBmgJaA9DCPRtwVLd1WpAlIaUUpRoFU1XAWgWR0C9lboAfdRBdX2UKGgGaAloD0MI0ENtG8YBckCUhpRSlGgVTQQBaBZHQL2WJMaS9uh1fZQoaAZoCWgPQwjTwfo/B9lxQJSGlFKUaBVNEQFoFkdAvZZf7P6bfHV9lChoBmgJaA9DCE9ZTdeTB29AlIaUUpRoFU1QAWgWR0C9lpMWsRxtdX2UKGgGaAloD0MIPZtVnytBcECUhpRSlGgVTQkBaBZHQL2XHfaYeDF1fZQoaAZoCWgPQwiph2h0B6EpQJSGlFKUaBVL2WgWR0C9l2E6PsAvdX2UKGgGaAloD0MIb9i2KDO2b0CUhpRSlGgVTSoBaBZHQL2Xk9YOlO51fZQoaAZoCWgPQwhnDkktlABxQJSGlFKUaBVNCgFoFkdAvZgzfgrH2nV9lChoBmgJaA9DCJ9ZEqAmhG1AlIaUUpRoFU2/AWgWR0C9n88wxnFpdX2UKGgGaAloD0MIml5iLFPvbECUhpRSlGgVTQsBaBZHQL2geCnxaxJ1fZQoaAZoCWgPQwjN6EfDqR1uQJSGlFKUaBVNPgFoFkdAvaCrvx6OYXV9lChoBmgJaA9DCOzAOSNK8XBAlIaUUpRoFU0yAWgWR0C9oU3lr/KhdX2UKGgGaAloD0MIfAvrxrtTMUCUhpRSlGgVS+ZoFkdAvaFmozeoDXV9lChoBmgJaA9DCALVP4gkVHFAlIaUUpRoFU00AWgWR0C9oY7k8zRAdX2UKGgGaAloD0MItFn1uVp5ZUCUhpRSlGgVTbQBaBZHQL2iAq/dqL11fZQoaAZoCWgPQwioiqn0ky1xQJSGlFKUaBVNCgFoFkdAvaISEcsDn3V9lChoBmgJaA9DCK1rtBzoQTtAlIaUUpRoFUvuaBZHQL2iTclw97p1fZQoaAZoCWgPQwho6nWLwNpfQJSGlFKUaBVN6ANoFkdAvaJlonKGL3V9lChoBmgJaA9DCEW7Cik/WS5AlIaUUpRoFUv8aBZHQL2jJQ6p5u91fZQoaAZoCWgPQwhZMVwdAHNmQJSGlFKUaBVNpgFoFkdAvaOEcU/OdHV9lChoBmgJaA9DCMAGRIgru1RAlIaUUpRoFU3oA2gWR0C9o5gqI7/5dX2UKGgGaAloD0MIke18PzWyNUCUhpRSlGgVS/9oFkdAvaO8MTewcHV9lChoBmgJaA9DCKPlQA+1RlRAlIaUUpRoFU3oA2gWR0C9o7/Sc9W7dX2UKGgGaAloD0MIrROX45XDbUCUhpRSlGgVTQIBaBZHQL2j6UjcEeR1fZQoaAZoCWgPQwgYP417c2BvQJSGlFKUaBVL+2gWR0C9pFbXUYsNdX2UKGgGaAloD0MI9RPObi0NbUCUhpRSlGgVTRYBaBZHQL2kuU3XI2h1fZQoaAZoCWgPQwjLuRRXlSptQJSGlFKUaBVNDAFoFkdAvaS/jOs1bnV9lChoBmgJaA9DCPM9IxGaeW9AlIaUUpRoFUv3aBZHQL2k49Pk7wN1fZQoaAZoCWgPQwgMIef9v1tyQJSGlFKUaBVL+mgWR0C9pPptSAH3dX2UKGgGaAloD0MIOxixTwB1KECUhpRSlGgVS6doFkdAvaUM3YL9dnV9lChoBmgJaA9DCJiJIqQu/XFAlIaUUpRoFU0DAWgWR0C9pUTkU9IPdX2UKGgGaAloD0MI9dpsrMSTYUCUhpRSlGgVTegDaBZHQL2mSW1MM7V1fZQoaAZoCWgPQwgKvJNPDxRoQJSGlFKUaBVNdANoFkdAvaZo0iyIHnV9lChoBmgJaA9DCIZXkjzXJUdAlIaUUpRoFU0AAWgWR0C9pnZaJQ+EdX2UKGgGaAloD0MI6C0e3nMARsCUhpRSlGgVTQABaBZHQL2mm1jiGWV1fZQoaAZoCWgPQwjhfyvZselvQJSGlFKUaBVNDAFoFkdAvaa4Py08eXV9lChoBmgJaA9DCB7f3jXoO0XAlIaUUpRoFUv9aBZHQL2mvlpoK2N1fZQoaAZoCWgPQwgbZmg8EWw0QJSGlFKUaBVLsWgWR0C9pwAo1DSgdX2UKGgGaAloD0MIPQ0YJP3/b0CUhpRSlGgVTU8BaBZHQL2nOSLIgeR1fZQoaAZoCWgPQwjSViWR/fxsQJSGlFKUaBVNAAFoFkdAvaeIKYzBRHV9lChoBmgJaA9DCLq+DwcJYW5AlIaUUpRoFU02AWgWR0C9p8CQtBfKdX2UKGgGaAloD0MIY5rpXid9W0CUhpRSlGgVTegDaBZHQL2nxjqOcUd1fZQoaAZoCWgPQwiwG7YtyhxvQJSGlFKUaBVNJQFoFkdAvaf0kD6nBXV9lChoBmgJaA9DCFvtYS+Usm5AlIaUUpRoFU0bAWgWR0C9p/5Bsyi3dX2UKGgGaAloD0MIzv+rjpzNbUCUhpRSlGgVTSMBaBZHQL2obslLOA11fZQoaAZoCWgPQwgVVb/S+XVuQJSGlFKUaBVNYwFoFkdAvajN+Zw4sHV9lChoBmgJaA9DCB/11yuswm5AlIaUUpRoFU0WAWgWR0C9qT4mLLpzdX2UKGgGaAloD0MIw9Zs5aVsb0CUhpRSlGgVS/5oFkdAvalKAPNFB3V9lChoBmgJaA9DCC0mNh+XfXBAlIaUUpRoFU0OAWgWR0C9qZ28EmpmdX2UKGgGaAloD0MIsn+eBozNbUCUhpRSlGgVTTQBaBZHQL2psZrHlwN1fZQoaAZoCWgPQwj5SiAl9gFyQJSGlFKUaBVNLwFoFkdAvamxVT72tnV9lChoBmgJaA9DCINOCB107T5AlIaUUpRoFUvIaBZHQL2p4DoyKvV1fZQoaAZoCWgPQwgdW88QjiVwQJSGlFKUaBVNMgFoFkdAvan2YE4ecXV9lChoBmgJaA9DCN154jnbOm9AlIaUUpRoFU0cAWgWR0C9qgYEKVpsdX2UKGgGaAloD0MIrkUL0DZobECUhpRSlGgVTRUBaBZHQL2qbEyckMV1fZQoaAZoCWgPQwg/V1uxP6lyQJSGlFKUaBVNUwFoFkdAvarCJCSid3V9lChoBmgJaA9DCDIFa5xNiHBAlIaUUpRoFU0vAWgWR0C9qugJC0F9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a471bfd6f0eaa6d46baa1655ca2f56cf21b844341c8af8078c990e4fc729b1db
3
- size 144052
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ef823589cf72673e6765642b15d730b7fa7a2d307cf2d2d848645d206eb8a7
3
+ size 147675
ppo-LunarLander-v2/data CHANGED
@@ -18,7 +18,7 @@
18
  "__abstractmethods__": "frozenset()",
19
  "_abc_impl": "<_abc_data object at 0x7f6847daff60>"
20
  },
21
- "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -35,28 +35,28 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
- "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 802816,
46
- "_total_timesteps": 800000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651713582.340361,
51
- "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABe2jwsQ54/c7z8PVE5Bb8WMJk9Xj8OPQAAAAAAAAAAWsuvPW1oTj4kh7m9fHZ5vnTVvL3y9ya9AAAAAAAAAADNDBQ8qGCDP2+DmL13Keu+BM6Hu/Ayb70AAAAAAAAAABqPiz171qu6KlkDOFHo4DJoybC6jnwWtwAAgD8AAIA/AOCnO308Bz7rGpW8GTOZvr7dCr0b/TW8AAAAAAAAAAAa45k9IksNPiLIIj3NGWi+f4gVvSCExLwAAAAAAAAAANrIB76HelY+DquRPmLpib50b3s9iflAPQAAAAAAAAAAmqltPU9oPLz3l4g838SLPA7vtD2FqmS9AACAPwAAgD+NYuI9oZn2PrMi7b4CVIy+Kl2iPMuOq74AAAAAAAAAAIBMcT2ksGs4ZsYzM5sHZK5qUQi6tSPPswAAgD8AAIA/cwuFvUbpgz+UpRy+W37ovvdb+r1z2Wu9AAAAAAAAAADm2L49Re2wPPCeL71u5yu+aQt/vfi5Ez0AAAAAAAAAAOYxTT2ueZS6OVw8uo/ALbWvOhe6wyNaOQAAgD8AAIA/Goolvbiuwz2syBs+LCibvqJBhD1d8Fm9AAAAAAAAAADamoQ9ey6Hul/nIzfmvz4y8Yc/O9+AP7YAAIA/AACAP80A+D32nF87K1FLvckeD7yvYgU9Ye0AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,20 +66,20 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.0035199999999999676,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBgg0YQQckCUhpRSlIwBbJRNHQGMAXSUR0Ci3+r/82rGdX2UKGgGaAloD0MIprc/F41sbkCUhpRSlGgVTQIBaBZHQKLgcPz4DcN1fZQoaAZoCWgPQwgIzEOmfIAiQJSGlFKUaBVLw2gWR0Ci4IOZ9d/sdX2UKGgGaAloD0MI+WhxxjDtckCUhpRSlGgVS+ZoFkdAouCK4UeuFHV9lChoBmgJaA9DCNV46SYx325AlIaUUpRoFU0AAWgWR0Ci4I704BFNdX2UKGgGaAloD0MI7bYLzXUmc0CUhpRSlGgVTQMBaBZHQKLg3CtzS1F1fZQoaAZoCWgPQwjqCUs8IM9sQJSGlFKUaBVL+mgWR0Ci4QcFhXr/dX2UKGgGaAloD0MIoRABhxCtckCUhpRSlGgVTRYBaBZHQKLhhTQVsUJ1fZQoaAZoCWgPQwhnCp3X2BpwQJSGlFKUaBVL5GgWR0Ci4Zg+IMz/dX2UKGgGaAloD0MIyf/k716MckCUhpRSlGgVS/JoFkdAouG7BEa2nnV9lChoBmgJaA9DCOnxe5v+C3BAlIaUUpRoFU0bAWgWR0Ci4dHCwbEQdX2UKGgGaAloD0MIf/W4bzWcckCUhpRSlGgVTT0BaBZHQKLh3ky1uzh1fZQoaAZoCWgPQwjtuUxNgj1xQJSGlFKUaBVNFgFoFkdAouJsfFJg9nV9lChoBmgJaA9DCPnzbcES+XBAlIaUUpRoFU0pAWgWR0Ci4qtKqXF+dX2UKGgGaAloD0MITn0geScockCUhpRSlGgVTU4BaBZHQKLi3F+/gzh1fZQoaAZoCWgPQwi+F1+0x1pvQJSGlFKUaBVNLAFoFkdAouPy2a2F4HV9lChoBmgJaA9DCA8pBkg0jWxAlIaUUpRoFUv7aBZHQKLkMV1wHZ91fZQoaAZoCWgPQwjcuMX8XPJxQJSGlFKUaBVNAgFoFkdAouTQdELH/HV9lChoBmgJaA9DCMhhMH/FPnJAlIaUUpRoFUv1aBZHQKLlBL127nR1fZQoaAZoCWgPQwio4zEDFVZyQJSGlFKUaBVNFQFoFkdAouVFfb9IgHV9lChoBmgJaA9DCFgczvxqMXFAlIaUUpRoFUvdaBZHQKLlSu2Zy+91fZQoaAZoCWgPQwirsu+KoFJzQJSGlFKUaBVL4mgWR0Ci5XOLaVUudX2UKGgGaAloD0MI0zB8RExZbkCUhpRSlGgVTQoBaBZHQKLlk1yeZoh1fZQoaAZoCWgPQwjIXYQpithwQJSGlFKUaBVNLwFoFkdAouXDK7qY7nV9lChoBmgJaA9DCE8hV+pZ6W9AlIaUUpRoFUvnaBZHQKLl0RoRIz51fZQoaAZoCWgPQwjWbrvQXOtuQJSGlFKUaBVNPgFoFkdAouX6fvnbI3V9lChoBmgJaA9DCCS2uwdoiG5AlIaUUpRoFUv/aBZHQKLmCghbGFV1fZQoaAZoCWgPQwjtRElIpIE5QJSGlFKUaBVLxGgWR0Ci5j8hkiD/dX2UKGgGaAloD0MIdqp8z0h4ckCUhpRSlGgVTRMBaBZHQKLmaD9Oymh1fZQoaAZoCWgPQwiP3nAfOfBwQJSGlFKUaBVNBgFoFkdAoubJ7zCk43V9lChoBmgJaA9DCLSR66bUFnFAlIaUUpRoFU0UAWgWR0Ci50CCz1K5dX2UKGgGaAloD0MIxCPx8nTRVUCUhpRSlGgVS6VoFkdAouehZyMkyHV9lChoBmgJaA9DCFyQLcvXoFFAlIaUUpRoFUvTaBZHQKLnrLf1pTN1fZQoaAZoCWgPQwiIE5hOa6BxQJSGlFKUaBVNCQFoFkdAouhQDJU5uXV9lChoBmgJaA9DCFFmg0wyJnNAlIaUUpRoFUv2aBZHQKLozruYx+N1fZQoaAZoCWgPQwg7jbRU3nhxQJSGlFKUaBVL5GgWR0Ci6OdYwIt2dX2UKGgGaAloD0MID9JT5JAFb0CUhpRSlGgVS/VoFkdAouljRjSXt3V9lChoBmgJaA9DCPD49q4BNXBAlIaUUpRoFU0JAWgWR0Ci90SQ5myxdX2UKGgGaAloD0MIXoWUn9S3cUCUhpRSlGgVTQQBaBZHQKL3dRsuWbB1fZQoaAZoCWgPQwimYmNeR3pxQJSGlFKUaBVL52gWR0Ci93o5xR2sdX2UKGgGaAloD0MIISI17WL+ckCUhpRSlGgVS9xoFkdAovf6++M6zXV9lChoBmgJaA9DCJoHsMjvVHFAlIaUUpRoFU0pAWgWR0Ci+BgT7EYPdX2UKGgGaAloD0MIxR1v8hu5ckCUhpRSlGgVTRgBaBZHQKL4IGh24d91fZQoaAZoCWgPQwhO1NLcijhvQJSGlFKUaBVNIAFoFkdAovgv2K2rn3V9lChoBmgJaA9DCJMANbVs+nBAlIaUUpRoFU1KAWgWR0Ci+C5QpF1CdX2UKGgGaAloD0MIzZTW3xJOcECUhpRSlGgVTSkBaBZHQKL4wx46fap1fZQoaAZoCWgPQwjLK9fbprJyQJSGlFKUaBVNAgFoFkdAovkGepXIVHV9lChoBmgJaA9DCF9AL9y5fG9AlIaUUpRoFUvqaBZHQKL5EdbxEv11fZQoaAZoCWgPQwiTcCGPYF9tQJSGlFKUaBVNBwFoFkdAovltaSs8xXV9lChoBmgJaA9DCLgiMUFN/HFAlIaUUpRoFUv8aBZHQKL55pxFRYR1fZQoaAZoCWgPQwiKlGbzOCFzQJSGlFKUaBVL3WgWR0Ci+e+717IDdX2UKGgGaAloD0MIqOUHrnIMbkCUhpRSlGgVTQABaBZHQKL6ZJAdGRV1fZQoaAZoCWgPQwhBYyZRb7RxQJSGlFKUaBVL6mgWR0Ci+ou27Wd3dX2UKGgGaAloD0MIICbhQh56cUCUhpRSlGgVS+doFkdAovrw5Jbt7nV9lChoBmgJaA9DCI+LahHRUW9AlIaUUpRoFUvgaBZHQKL7rg5zYEp1fZQoaAZoCWgPQwju68A5Iz1yQJSGlFKUaBVNDgFoFkdAovvXFHavinV9lChoBmgJaA9DCOsB85Cp/XBAlIaUUpRoFU0eAWgWR0Ci/B/Q0GeMdX2UKGgGaAloD0MIda29T9UgcUCUhpRSlGgVTQoBaBZHQKL8ahEBsAN1fZQoaAZoCWgPQwhtdM5PMY5yQJSGlFKUaBVNFQFoFkdAovx393r2QHV9lChoBmgJaA9DCC2Xjc45QHFAlIaUUpRoFUvoaBZHQKL8j2RJVbR1fZQoaAZoCWgPQwhFvHX+7c1yQJSGlFKUaBVNEAFoFkdAovyUeU6gd3V9lChoBmgJaA9DCPEQxk/js3BAlIaUUpRoFUvoaBZHQKL8z2icoYx1fZQoaAZoCWgPQwgujzUjg8VxQJSGlFKUaBVNKAFoFkdAovzZUgjhUHV9lChoBmgJaA9DCO85sBwhS3FAlIaUUpRoFU0AAWgWR0Ci/TD+aScLdX2UKGgGaAloD0MIPQ6D+St7VUCUhpRSlGgVS6hoFkdAov1bAFgUlHV9lChoBmgJaA9DCOKuXkXGEHBAlIaUUpRoFUv8aBZHQKL9gQ5FPSF1fZQoaAZoCWgPQwhsy4Cz1FlwQJSGlFKUaBVL/mgWR0Ci/opI1+AmdX2UKGgGaAloD0MIAMeePde3ckCUhpRSlGgVTTQBaBZHQKL+8oScslN1fZQoaAZoCWgPQwivCWmNAVxxQJSGlFKUaBVNOgFoFkdAov8cORT0hHV9lChoBmgJaA9DCFOUS+OXumxAlIaUUpRoFU0VAWgWR0Ci/5jynUDudX2UKGgGaAloD0MIbNECtK1IbUCUhpRSlGgVS/hoFkdAov/Od/axo3V9lChoBmgJaA9DCKZ7ndTXZHJAlIaUUpRoFUvXaBZHQKL/9bfxc3V1fZQoaAZoCWgPQwi0yeGTTu9xQJSGlFKUaBVNAAFoFkdAowBcglnh9HV9lChoBmgJaA9DCIqvdhRnLG5AlIaUUpRoFUvraBZHQKMAa+yquKZ1fZQoaAZoCWgPQwjc2OxIdXdtQJSGlFKUaBVNFAFoFkdAowB1mvnr6nV9lChoBmgJaA9DCAvxSLw8WXFAlIaUUpRoFU0NAWgWR0CjANcdo372dX2UKGgGaAloD0MIiNnLttO6R0CUhpRSlGgVS8toFkdAowD794u9OHV9lChoBmgJaA9DCKZ7ndQXdXNAlIaUUpRoFU0DAWgWR0CjARhYNiH7dX2UKGgGaAloD0MIINEEiljKcECUhpRSlGgVTRsBaBZHQKMBOMsH0K91fZQoaAZoCWgPQwh0YDlChoJyQJSGlFKUaBVL8mgWR0CjAWfcWTHKdX2UKGgGaAloD0MIPZ0rSgkzbkCUhpRSlGgVTToBaBZHQKMCZftQbdd1fZQoaAZoCWgPQwiez4B6swVzQJSGlFKUaBVL7WgWR0CjAv3yAhB7dX2UKGgGaAloD0MIEp87wf7rUkCUhpRSlGgVS79oFkdAowMAuK4x13V9lChoBmgJaA9DCKGd0yzQHG9AlIaUUpRoFU0LAWgWR0CjAyFQMx46dX2UKGgGaAloD0MIPKBsyhW4cUCUhpRSlGgVTX4BaBZHQKMDLLlmvnt1fZQoaAZoCWgPQwhFSUikrQdyQJSGlFKUaBVL92gWR0CjA74tpVS5dX2UKGgGaAloD0MIGM+goT+XcECUhpRSlGgVTS8BaBZHQKMES5wwTM91fZQoaAZoCWgPQwgZ/tMNVJBwQJSGlFKUaBVL6mgWR0CjBFvuogmrdX2UKGgGaAloD0MIY/IGmLlCcUCUhpRSlGgVS/toFkdAowSYzBRAKXV9lChoBmgJaA9DCBToE3kSynBAlIaUUpRoFUvyaBZHQKME6/xDst11fZQoaAZoCWgPQwjJBWfw9y5xQJSGlFKUaBVL3mgWR0CjBPxRuTA4dX2UKGgGaAloD0MIu2QcI9kOckCUhpRSlGgVTSsBaBZHQKMFBs67ulZ1fZQoaAZoCWgPQwhQGf8+o1VyQJSGlFKUaBVNKAFoFkdAowVsW69TP3V9lChoBmgJaA9DCPxUFRrIe3BAlIaUUpRoFUvsaBZHQKMFbuBtk4F1fZQoaAZoCWgPQwj6Cz1idGRxQJSGlFKUaBVNDwFoFkdAowWIRwqAjXV9lChoBmgJaA9DCCXqBZ9mYHBAlIaUUpRoFU0IAWgWR0CjBYiOearndX2UKGgGaAloD0MIl3SUg9lmb0CUhpRSlGgVS/VoFkdAowZx2U0N0HV9lChoBmgJaA9DCI+JlGazcHNAlIaUUpRoFUvjaBZHQKMGsF6Avtd1fZQoaAZoCWgPQwg6BfnZyPpvQJSGlFKUaBVNAAFoFkdAowdYGUwBYHV9lChoBmgJaA9DCMU4fxPKUnFAlIaUUpRoFU0RAWgWR0CjB5dycTakdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 320,
79
  "n_steps": 1024,
80
- "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
- "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
 
18
  "__abstractmethods__": "frozenset()",
19
  "_abc_impl": "<_abc_data object at 0x7f6847daff60>"
20
  },
21
+ "verbose": 0,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAUP5XxJT/bziFzeur8lbUhoTWvRgYgGMohCJ2gfDPTVriOxkmfE37bd200xe1AKexQgHGDBTKkZdv4341Yh7PLqD3Z7NNdI4XoM2STARslaQcUADOjUfPJY8WDpV6adk8AuU89/b7kvgpn7RCOGdILSNUbOr8c2FPcw1QU0IQT6zktr31Fh+ZLmzL+XTrLeA2MMEEIqP54NGsxRMLDHpfKEbO4TKcmmnggBIL0RKxNGM/mNmAZ4sQWXj1SbjQsYDDLITpg/qWZygGW6JWPByOoAzguk3Qm5dXM7iqpYxY9IKVIZB1z/Ei6i0Lxx+eiqlxMG6TAy+reUNkVdfliC3U1/FI6rEgccC8JfPdrqwiluTLlxvDBT3H+UDbWDKy4+hKk+fbjIlfB6cdjo+Kkqj/dQoMz0J0tirTppJaO/sKPGHmf1FY6USRQi0BKKP0mLqI6iQKVItQMh+ibfkmeugReMFSBzQDXR1TjKIDzE+tneMK19Kap2mA1xdc/KaaVZPyeM/L7rngxqt4cc84dmtFefIM59QrCdKeZ1z/4jaoZB7ulqmISIXxMNT1ICK+UI+PH+E28qXsoSElungeFtgRTWRwtU2J0G1BGDzceJiGpPI26Fbd9B9zPjcw3WcklNoXCy1vB0GT4srm3pJMH+seIa5BGSLRdlkP/4KKOddQ+I4NiT6FMBtppxXYZh6nBZRxMM8tvJ6JQ9g1X75tkd+k1Ur4RU/rx0SD8Yud7VfqRfUvXqM0RRADn8tgcHxdq4u7KhIVpbWcOtzK0UlY6znCZ1LM2sJ/Aa9xAPYcva0cbekj5BaOyo93amT5wHhQa5DN5lKItZz3VMsSsaFJyw3zv8dXYk4RIleyu6fhVXJ6aYoKAXgTxklNdRJWdr4LEYDNnD67viuwy/D8TYXQ+XiOyN7sj7d0UNm0kM8R95dFE4bwBv9f8rItWTM/nFlqHgn8FeHG4WUl0mCb4KJr9pu0kk/GZGpr+UYeo9AjaSULnnP6qgKeVEW1NaBEl272mMiSHTFEtYWL3T58HRTXvtWeSFP3sAewDbQwLia/4pFy0uQHVLh3AEPLW16jEpe9rsSosbYgpGajfHRtjgIO7Y+4gPYoMK+3MRrGP1TKNP5kTaQVUrqqaxyxK3bS6jE48TOykKwh4F6v/oT8wyScRF682y8nVXZkFBK+Q1iv9AWb38t/Vzh2w4O5sB9Zc3sIfM7I8zjY3txwG2ch8Pd5q9J/hGNScbJroTDoWzzFZBcCJsfFE4XkSvXl+JyRhSqS0PBUy8XdrzyilGZyTMIuJddGX1o3IrhMQQ4odDKD/vFxKG/7WejU1hA7z7GtKL5FNGeHhfOTMQ/wkyNm7rzoVevMZIcYjd+pcQkNzTwfwlxpVoI2Bx7nevNr63ZRbK7F1DRpRFzI151lnOdfg8mtmhlyhEHVJkf8jt14EsrA+Z9lFgLeb/LfgaCINBI4gRtDkOuWbNO3NVe6/o9dX2TUoCBmv7TzYIJ/GmYkJ8MlA0UpnjO6526VlOx2E9vwuHbq2h92OkA8r/niRBfSL/a8x06N6C3vGxOjjIoOUaVlG4TIjbZ0QF1wXtU7HI9H/AGCZ9ZC9Yc15BZJiZKi4dqgVmI86PHoJ9HHbuUrqlv/K1EBv29OJ9h/LDNjQhzf57BLnSoVwdYWsD8YNZW7giCxFqAVVLZfFpWaOisD0EJNX7+w5D1AskOaUmweJSNr+/ns/fOcBaBPgaam3ZI4BWVUQXVDQ7sewyClp9JTSFTZYonJcCybaaJRJRNf6Cfqk4kW5aFbvpnKMM65tm1Y3U4FM77l7RTcktMeebR40HpqvTjQ2G+m5J7muwd55uIohELyaX8+4Sbbi8Zq6qCNzrlNi1Fhj6f/JT4dhbOGyvsn5NbKRVxz0H3+FxR0tIdBZsbjlIXyoRW+rn+Yej8gvKFd7flb+jFcI7OhbQL7+vVy40bG8tihdwPF9Anf9g5Q6vtaA8xr/oHC232xFFib1MjJFJFJA2hzKH9uB/suKnsRQRATniTN+EPyK07akUARohL/QjwYowcvQlSOLH/ZV2OMrhy1R/K+rYgkJByQFQ+KtNkjbKKyyTeJ6IEltL7f6T3co3KwVtxjjpwSFRX3G+S7MeN296kZdeCJ1HbAgL+QmeLHSTjc9r6O9gzLrbFWKc9MyVfLKoHARf4/d21n5826Vq7dp/zU7PDpYopoH/LLOFo7h48OyKCO1SCFtZPEYTbXWmrUWSL0i59wl5mOGmAlyjRlXdZwbELsAEOKWG53rcqknle2NAtsBN898x/f4Q9rE9TKECNef8cxn/6NmvCer9F8MPF798OTX8dK+4I7ryc1vCVeyrp6j5M3yWs/QTWINMadoF+4M7tTm+aSWwD7hzZyfLE0rnEaXxpSJfKSfypBtR8H4aRJcC+lqaIf1ev8o7cLP+fr0GE5Z6qGTphHFiV8txacUDJutgxTuDhoQUUodym7vFN32wZ8s6wBbcRWQGGom1K0f5PtKSsbXvW9acUVQMEl+tTMW/LrwPggAOIeQD8ijCUDGMxWIqA0QZspYVlBt2pEKAk4jT4a2q6IJhsEJhmSMoqOgJi4Z1l/J8exyJtdkNl3SiS2FY3tjbEH6iairpu/h69H3hVKWdufh9voNsG78S3EscCGCsqM2EnBGNL/jJXDyWYFJ2tE55ScVZY9bP9evN0kFoLjPCGzpJnGTNDGeAYFIRJj4nkr/ksG5ef8zGayvsYcTOPM3WNJRetWKBj+XlOhbPy1Y5H0KFgcRSUZBT0zgwLUu5V6W6ve3zbJL2iHB0yPalYEEcx8PzM3EPxVOJ80CXi8Z/52KXa+vmjtwDeD2mNX9XbqPpDwHxGpgxiVI3jin+I9pg4znrNYN9ell2dt3ZEV6SKnxsz9V7xw9VfJV9DEn5PX5eY+9vNsf1mdRXOa5ID25l4MjP3wah7wG6wnUOuI5A5k0HIeAE1GuYvb84s/NAwBf3KCxUVOvVXLOZBZY0vYm/o4lKi5eVcG6+yAxmkTdUtv98dnhCYd7e8xa55jXgSd6yQUmVtdK6dTjy/fPDNoKa8Sg3sG12otDJVGxSpAbg7jeGP5xzP++1zOXODcOYDEGVhA5nrKp9qMxIy6+ASCYXyKQsn7C224/s2a60Fq8Tvg6/RML2y5wPZA8AFZra5X1VSilSGd0Mhrj2N45RmxRDghla4452BDGV7Jl8p1z2r6wNtNuna9t7TsMVPIdQKhYu8Wk334/kZt8wUkffbHQIug4AuOFb5M+ZDuqvAkTXwt/DS2mQVMht710rcdyfN81Hma6smID5G2rDR0p+xMJjd+I0jslGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNwAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651719085.3405986,
51
+ "learning_rate": 0.001,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMO/73RCkU/N6c4Pf5JAL9Z56y8OQe0PAAAAAAAAAAALWEYvjX3RT6quyE95ggbvgQTGzw6wwG9AAAAAAAAAAAaqYq9HxXluSRHnTzN8h48w6KaO+4tCz0AAIA/AACAPybuDz50XYg+Np6mPb5Rgr6HtRE99oW3PAAAAAAAAAAArah5PsZFBT8jylK9do2PviSMED0Sc7u9AAAAAAAAAABgfh6+u7PDPnoN3D2pVHq+v6AQPe8CEz0AAAAAAAAAAFZ7hz6f+Mc8Lo22unv0WLlocl4+q2zyOQAAgD8AAIA/TSRbvXtumLpVfq62q44NskTUvTqi2cY1AACAPwAAgD+aU128gEeyP1pULb9kkdS+3YxdPGsd5z0AAAAAAAAAAFO4n76lmik//jLuvqMsG78X5YW+4B8gvgAAAAAAAAAAjbjYPofYgT6qZ1u9RxaBvvewCz1IItq8AAAAAAAAAAArHaO+jPk4P1Vkdr2BYcu+LFkEvm/6LrwAAAAAAAAAAMAE7r00Va8++4xdPkGCi75z/lQ9gJoaPQAAAAAAAAAAAADYPa7ZiLpWtQO23CjmsBm3xDnriyI1AAAAAAAAgD+mVyq+SX9PPYenhT05Ic69rjw5u0xQIb0AAAAAAAAAAM3IyD1m66I/WvUaPy8F/b7zQ2A9GJ0WPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWBzO/OrCbUCUhpRSlIwBbJRNEwGMAXSUR0C9he02cawVdX2UKGgGaAloD0MIjbgANIqYcECUhpRSlGgVS/9oFkdAvYz34h2W6nV9lChoBmgJaA9DCHldv2A3EWFAlIaUUpRoFU3oA2gWR0C9jP1NlAeJdX2UKGgGaAloD0MIOxqH+t1VcUCUhpRSlGgVS/toFkdAvY0btdAxBXV9lChoBmgJaA9DCFmFzQAX7CjAlIaUUpRoFUv8aBZHQL2NLLaEi+t1fZQoaAZoCWgPQwhCeoocomtxQJSGlFKUaBVNQwFoFkdAvY02XWvr4XV9lChoBmgJaA9DCKsJou6DwGFAlIaUUpRoFU3oA2gWR0C9jZKMNtqIdX2UKGgGaAloD0MI/WZiupBnbkCUhpRSlGgVTRMBaBZHQL2OcEPDpC91fZQoaAZoCWgPQwjXT/9Z8zVrQJSGlFKUaBVNwwFoFkdAvY5vzDn/1nV9lChoBmgJaA9DCJaUu8/xGHBAlIaUUpRoFU1OAWgWR0C9jn0P6KtQdX2UKGgGaAloD0MIFEGch5OcbkCUhpRSlGgVTQMBaBZHQL2OgK8cuJ11fZQoaAZoCWgPQwh3o4/5QCtwQJSGlFKUaBVL/WgWR0C9jw5j6N2ldX2UKGgGaAloD0MIb38uGrKPbUCUhpRSlGgVTVUBaBZHQL2PE3iaRZF1fZQoaAZoCWgPQwjt8q0Pa2dyQJSGlFKUaBVNkQFoFkdAvY9H7rLQonV9lChoBmgJaA9DCD3wMVhxShpAlIaUUpRoFUvTaBZHQL2PSAPd2xJ1fZQoaAZoCWgPQwhdqPxruQVxQJSGlFKUaBVL7mgWR0C9j6Wa6STydX2UKGgGaAloD0MIWwcHe5M8akCUhpRSlGgVTTABaBZHQL2Pvz3AVO91fZQoaAZoCWgPQwgJjPUNTEJvQJSGlFKUaBVNDAFoFkdAvY/JcophF3V9lChoBmgJaA9DCNifxOfObm5AlIaUUpRoFU1GAWgWR0C9kDVV94NadX2UKGgGaAloD0MIYmafx6gCbUCUhpRSlGgVTScBaBZHQL2QSFnZkCp1fZQoaAZoCWgPQwj2CgvuByNcQJSGlFKUaBVN6ANoFkdAvZCT9tMwlHV9lChoBmgJaA9DCKa0/pYAAW1AlIaUUpRoFU0vAWgWR0C9kMIjKPn0dX2UKGgGaAloD0MI6BTkZyOyakCUhpRSlGgVTXkBaBZHQL2Q44VARkF1fZQoaAZoCWgPQwgiUtMupuEgwJSGlFKUaBVL6mgWR0C9kOitJWeZdX2UKGgGaAloD0MIFt16TY81b0CUhpRSlGgVS/1oFkdAvZEoj2SMcnV9lChoBmgJaA9DCKa3PxcNGSjAlIaUUpRoFU0DAWgWR0C9kTRi1AqvdX2UKGgGaAloD0MIOsssQrHtbkCUhpRSlGgVTRABaBZHQL2RR61b7j11fZQoaAZoCWgPQwgd5WA2ASJrQJSGlFKUaBVNCwFoFkdAvZHOWBz3iHV9lChoBmgJaA9DCJgYy/RLVBTAlIaUUpRoFUv6aBZHQL2R2NkvsZ51fZQoaAZoCWgPQwgKZHYWvZNwQJSGlFKUaBVNAwFoFkdAvZHuxW1c+3V9lChoBmgJaA9DCIGyKVf4fm9AlIaUUpRoFU0jAWgWR0C9kg12NedDdX2UKGgGaAloD0MIB7KeWv1LcECUhpRSlGgVTSoBaBZHQL2SpPWxyGV1fZQoaAZoCWgPQwj7eVORykdwQJSGlFKUaBVNRAFoFkdAvZMUxL0z03V9lChoBmgJaA9DCG9lic7ycXBAlIaUUpRoFUv/aBZHQL2TKVclgMN1fZQoaAZoCWgPQwhJnYAmQn1uQJSGlFKUaBVNJgFoFkdAvZM0Pz4DcXV9lChoBmgJaA9DCPUOt0ODVHFAlIaUUpRoFUv6aBZHQL2TdngYP5J1fZQoaAZoCWgPQwjQKF36lyRvQJSGlFKUaBVNBgFoFkdAvZP0p5NXYHV9lChoBmgJaA9DCDFD44kgHiBAlIaUUpRoFU0CAWgWR0C9lAGyLQ5WdX2UKGgGaAloD0MIbsFSXcBJbkCUhpRSlGgVTQUBaBZHQL2Ush9LHuJ1fZQoaAZoCWgPQwhz2eicnw5tQJSGlFKUaBVNAQFoFkdAvZTONzbN8nV9lChoBmgJaA9DCCk8aHZdmW1AlIaUUpRoFU1TAWgWR0C9lNeIZZSvdX2UKGgGaAloD0MI1xcJbblpa0CUhpRSlGgVTbQBaBZHQL2U98Kohpx1fZQoaAZoCWgPQwgL8N3mjfdtQJSGlFKUaBVNLgFoFkdAvZV+j9GZu3V9lChoBmgJaA9DCPRtwVLd1WpAlIaUUpRoFU1XAWgWR0C9lboAfdRBdX2UKGgGaAloD0MI0ENtG8YBckCUhpRSlGgVTQQBaBZHQL2WJMaS9uh1fZQoaAZoCWgPQwjTwfo/B9lxQJSGlFKUaBVNEQFoFkdAvZZf7P6bfHV9lChoBmgJaA9DCE9ZTdeTB29AlIaUUpRoFU1QAWgWR0C9lpMWsRxtdX2UKGgGaAloD0MIPZtVnytBcECUhpRSlGgVTQkBaBZHQL2XHfaYeDF1fZQoaAZoCWgPQwiph2h0B6EpQJSGlFKUaBVL2WgWR0C9l2E6PsAvdX2UKGgGaAloD0MIb9i2KDO2b0CUhpRSlGgVTSoBaBZHQL2Xk9YOlO51fZQoaAZoCWgPQwhnDkktlABxQJSGlFKUaBVNCgFoFkdAvZgzfgrH2nV9lChoBmgJaA9DCJ9ZEqAmhG1AlIaUUpRoFU2/AWgWR0C9n88wxnFpdX2UKGgGaAloD0MIml5iLFPvbECUhpRSlGgVTQsBaBZHQL2geCnxaxJ1fZQoaAZoCWgPQwjN6EfDqR1uQJSGlFKUaBVNPgFoFkdAvaCrvx6OYXV9lChoBmgJaA9DCOzAOSNK8XBAlIaUUpRoFU0yAWgWR0C9oU3lr/KhdX2UKGgGaAloD0MIfAvrxrtTMUCUhpRSlGgVS+ZoFkdAvaFmozeoDXV9lChoBmgJaA9DCALVP4gkVHFAlIaUUpRoFU00AWgWR0C9oY7k8zRAdX2UKGgGaAloD0MItFn1uVp5ZUCUhpRSlGgVTbQBaBZHQL2iAq/dqL11fZQoaAZoCWgPQwioiqn0ky1xQJSGlFKUaBVNCgFoFkdAvaISEcsDn3V9lChoBmgJaA9DCK1rtBzoQTtAlIaUUpRoFUvuaBZHQL2iTclw97p1fZQoaAZoCWgPQwho6nWLwNpfQJSGlFKUaBVN6ANoFkdAvaJlonKGL3V9lChoBmgJaA9DCEW7Cik/WS5AlIaUUpRoFUv8aBZHQL2jJQ6p5u91fZQoaAZoCWgPQwhZMVwdAHNmQJSGlFKUaBVNpgFoFkdAvaOEcU/OdHV9lChoBmgJaA9DCMAGRIgru1RAlIaUUpRoFU3oA2gWR0C9o5gqI7/5dX2UKGgGaAloD0MIke18PzWyNUCUhpRSlGgVS/9oFkdAvaO8MTewcHV9lChoBmgJaA9DCKPlQA+1RlRAlIaUUpRoFU3oA2gWR0C9o7/Sc9W7dX2UKGgGaAloD0MIrROX45XDbUCUhpRSlGgVTQIBaBZHQL2j6UjcEeR1fZQoaAZoCWgPQwgYP417c2BvQJSGlFKUaBVL+2gWR0C9pFbXUYsNdX2UKGgGaAloD0MI9RPObi0NbUCUhpRSlGgVTRYBaBZHQL2kuU3XI2h1fZQoaAZoCWgPQwjLuRRXlSptQJSGlFKUaBVNDAFoFkdAvaS/jOs1bnV9lChoBmgJaA9DCPM9IxGaeW9AlIaUUpRoFUv3aBZHQL2k49Pk7wN1fZQoaAZoCWgPQwgMIef9v1tyQJSGlFKUaBVL+mgWR0C9pPptSAH3dX2UKGgGaAloD0MIOxixTwB1KECUhpRSlGgVS6doFkdAvaUM3YL9dnV9lChoBmgJaA9DCJiJIqQu/XFAlIaUUpRoFU0DAWgWR0C9pUTkU9IPdX2UKGgGaAloD0MI9dpsrMSTYUCUhpRSlGgVTegDaBZHQL2mSW1MM7V1fZQoaAZoCWgPQwgKvJNPDxRoQJSGlFKUaBVNdANoFkdAvaZo0iyIHnV9lChoBmgJaA9DCIZXkjzXJUdAlIaUUpRoFU0AAWgWR0C9pnZaJQ+EdX2UKGgGaAloD0MI6C0e3nMARsCUhpRSlGgVTQABaBZHQL2mm1jiGWV1fZQoaAZoCWgPQwjhfyvZselvQJSGlFKUaBVNDAFoFkdAvaa4Py08eXV9lChoBmgJaA9DCB7f3jXoO0XAlIaUUpRoFUv9aBZHQL2mvlpoK2N1fZQoaAZoCWgPQwgbZmg8EWw0QJSGlFKUaBVLsWgWR0C9pwAo1DSgdX2UKGgGaAloD0MIPQ0YJP3/b0CUhpRSlGgVTU8BaBZHQL2nOSLIgeR1fZQoaAZoCWgPQwjSViWR/fxsQJSGlFKUaBVNAAFoFkdAvaeIKYzBRHV9lChoBmgJaA9DCLq+DwcJYW5AlIaUUpRoFU02AWgWR0C9p8CQtBfKdX2UKGgGaAloD0MIY5rpXid9W0CUhpRSlGgVTegDaBZHQL2nxjqOcUd1fZQoaAZoCWgPQwiwG7YtyhxvQJSGlFKUaBVNJQFoFkdAvaf0kD6nBXV9lChoBmgJaA9DCFvtYS+Usm5AlIaUUpRoFU0bAWgWR0C9p/5Bsyi3dX2UKGgGaAloD0MIzv+rjpzNbUCUhpRSlGgVTSMBaBZHQL2obslLOA11fZQoaAZoCWgPQwgVVb/S+XVuQJSGlFKUaBVNYwFoFkdAvajN+Zw4sHV9lChoBmgJaA9DCB/11yuswm5AlIaUUpRoFU0WAWgWR0C9qT4mLLpzdX2UKGgGaAloD0MIw9Zs5aVsb0CUhpRSlGgVS/5oFkdAvalKAPNFB3V9lChoBmgJaA9DCC0mNh+XfXBAlIaUUpRoFU0OAWgWR0C9qZ28EmpmdX2UKGgGaAloD0MIsn+eBozNbUCUhpRSlGgVTTQBaBZHQL2psZrHlwN1fZQoaAZoCWgPQwj5SiAl9gFyQJSGlFKUaBVNLwFoFkdAvamxVT72tnV9lChoBmgJaA9DCINOCB107T5AlIaUUpRoFUvIaBZHQL2p4DoyKvV1fZQoaAZoCWgPQwgdW88QjiVwQJSGlFKUaBVNMgFoFkdAvan2YE4ecXV9lChoBmgJaA9DCN154jnbOm9AlIaUUpRoFU0cAWgWR0C9qgYEKVpsdX2UKGgGaAloD0MIrkUL0DZobECUhpRSlGgVTRUBaBZHQL2qbEyckMV1fZQoaAZoCWgPQwg/V1uxP6lyQJSGlFKUaBVNUwFoFkdAvarCJCSid3V9lChoBmgJaA9DCDIFa5xNiHBAlIaUUpRoFU0vAWgWR0C9qugJC0F9dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 124,
79
  "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:56c910201f82dce473ec057ab77b0ba8f20332274c4e825eb4fbaf1ed3ee8a39
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d6ee9c2143ccefe65357d8a5f34f328b0e724fa7634a6e8c9482d13eb603f1
3
+ size 84829
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc6dd4d2459d235d93d6eb9c72224fa1a149771442aefa108493e92eeb5ebf19
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ef70e29626d9c285bbe6f0f117afae40ef86e490d1fd3e4c3d1fba99774adb
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:736b51d34a8a0098464c16a36e53fef31539ba63de323208e86e989ae17b5855
3
- size 207977
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2281d1dfacfd14911cc88f6768f22143a9dfa31a952839f380a9ed1767a293c
3
+ size 231014
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 274.9719124955487, "std_reward": 13.754573995204746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:41:39.182097"}
 
1
+ {"mean_reward": 214.14628230242633, "std_reward": 72.81867047117288, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T03:08:21.185763"}