metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-dutch-fast-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: nl
split: test
args: nl
metrics:
- name: Wer
type: wer
value: 0.37981610317750925
wav2vec2-large-xls-r-300m-dutch-fast-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.5065
- Wer: 0.3798
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.463 | 0.68 | 200 | 2.9358 | 1.0 |
1.8336 | 1.36 | 400 | 0.9449 | 0.6652 |
0.332 | 2.03 | 600 | 0.6117 | 0.4496 |
0.1614 | 2.71 | 800 | 0.5065 | 0.3798 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3