metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
receive upi mandate collect request marg techno project private limit inr
15000.00. log google pay app authorize - axis bank
- text: >-
sep-23 statement credit card x6343 total due : inr 5575.55 min due : inr
4811.55 due date : 08-oct-23 . pay www.kotak.com/rd/ccpymt - kotak bank
- text: '< # > use otp : 8233 login turtlemintpro zck+rfoaqnm'
- text: >-
arrive today : please use otp-550041 carefully read instructions secure
amazon package ( id : sptp719784310 )
- text: >-
a/c xxx51941 credit rs 132.00 12-08-2023 - fd1186130010001148int:132.00
tax:0.00. a/c balance rs 67022.91 .please call 18002082121 query . ujjivan
sfb
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9722222222222222
name: Accuracy
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
2 |
|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9722 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer5c95292")
# Run inference
preds = model("< # > use otp : 8233 login turtlemintpro zck+rfoaqnm")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 20.5357 | 35 |
Label | Training Sample Count |
---|---|
0 | 31 |
1 | 28 |
2 | 81 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0014 | 1 | 0.2939 | - |
0.0708 | 50 | 0.1698 | - |
0.1416 | 100 | 0.0557 | - |
0.2125 | 150 | 0.0614 | - |
0.2833 | 200 | 0.0099 | - |
0.3541 | 250 | 0.0005 | - |
0.4249 | 300 | 0.0002 | - |
0.4958 | 350 | 0.0001 | - |
0.5666 | 400 | 0.0001 | - |
0.6374 | 450 | 0.0001 | - |
0.7082 | 500 | 0.0001 | - |
0.7790 | 550 | 0.0001 | - |
0.8499 | 600 | 0.0002 | - |
0.9207 | 650 | 0.0001 | - |
0.9915 | 700 | 0.0001 | - |
1.0 | 706 | - | 0.0312 |
1.0623 | 750 | 0.0001 | - |
1.1331 | 800 | 0.0001 | - |
1.2040 | 850 | 0.0001 | - |
1.2748 | 900 | 0.0 | - |
1.3456 | 950 | 0.0001 | - |
1.4164 | 1000 | 0.0 | - |
1.4873 | 1050 | 0.0 | - |
1.5581 | 1100 | 0.0 | - |
1.6289 | 1150 | 0.0 | - |
1.6997 | 1200 | 0.0 | - |
1.7705 | 1250 | 0.0 | - |
1.8414 | 1300 | 0.0001 | - |
1.9122 | 1350 | 0.0 | - |
1.9830 | 1400 | 0.0001 | - |
2.0 | 1412 | - | 0.0366 |
2.0538 | 1450 | 0.0 | - |
2.1246 | 1500 | 0.0001 | - |
2.1955 | 1550 | 0.0 | - |
2.2663 | 1600 | 0.0 | - |
2.3371 | 1650 | 0.0 | - |
2.4079 | 1700 | 0.0 | - |
2.4788 | 1750 | 0.0 | - |
2.5496 | 1800 | 0.0 | - |
2.6204 | 1850 | 0.0 | - |
2.6912 | 1900 | 0.0 | - |
2.7620 | 1950 | 0.0 | - |
2.8329 | 2000 | 0.0 | - |
2.9037 | 2050 | 0.0 | - |
2.9745 | 2100 | 0.0 | - |
3.0 | 2118 | - | 0.0414 |
3.0453 | 2150 | 0.0 | - |
3.1161 | 2200 | 0.0 | - |
3.1870 | 2250 | 0.0 | - |
3.2578 | 2300 | 0.0 | - |
3.3286 | 2350 | 0.0 | - |
3.3994 | 2400 | 0.0 | - |
3.4703 | 2450 | 0.0 | - |
3.5411 | 2500 | 0.0 | - |
3.6119 | 2550 | 0.0 | - |
3.6827 | 2600 | 0.0 | - |
3.7535 | 2650 | 0.0 | - |
3.8244 | 2700 | 0.0 | - |
3.8952 | 2750 | 0.0 | - |
3.9660 | 2800 | 0.0 | - |
4.0 | 2824 | - | 0.0366 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}