This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the librispeech_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.1444
- Wer: 0.1167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9365 | 4.17 | 500 | 2.9398 | 0.9999 |
1.5444 | 8.33 | 1000 | 0.5947 | 0.4289 |
1.1367 | 12.5 | 1500 | 0.2751 | 0.2366 |
0.9972 | 16.66 | 2000 | 0.2032 | 0.1797 |
0.9118 | 20.83 | 2500 | 0.1786 | 0.1479 |
0.8664 | 24.99 | 3000 | 0.1641 | 0.1408 |
0.8251 | 29.17 | 3500 | 0.1537 | 0.1267 |
0.793 | 33.33 | 4000 | 0.1525 | 0.1244 |
0.785 | 37.5 | 4500 | 0.1470 | 0.1184 |
0.7612 | 41.66 | 5000 | 0.1446 | 0.1177 |
0.7478 | 45.83 | 5500 | 0.1449 | 0.1176 |
0.7443 | 49.99 | 6000 | 0.1444 | 0.1167 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vitouphy/wav2vec2-xls-r-300m-english
Dataset used to train vitouphy/wav2vec2-xls-r-300m-english
Evaluation results
- Test WER on LibriSpeech (clean)test set self-reported12.290
- Test CER on LibriSpeech (clean)test set self-reported3.340
- Validation WER on Robust Speech Event - Dev Dataself-reported36.750
- Validation CER on Robust Speech Event - Dev Dataself-reported14.830
- Test WER on Common Voice 8.0test set self-reported37.810
- Test WER on Robust Speech Event - Test Dataself-reported38.800