|
--- |
|
base_model: klue/roberta-base |
|
tags: |
|
- generated_from_trainer |
|
- korean |
|
- klue |
|
widget: |
|
- text: 환자는 심부전 진단을 받고 매일 아침 40mg의 푸로세미드를 복용하며, 지속적인 심전도 모니터링을 받습니다. |
|
model-index: |
|
- name: klue-roberta-base-ner-bio |
|
results: [] |
|
language: |
|
- ko |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# klue-roberta-base-ner-bio |
|
|
|
This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0057 |
|
- Precision: 0.9888 |
|
- Recall: 1.0 |
|
- F1: 0.9944 |
|
- Accuracy: 0.9998 |
|
|
|
## Model description |
|
|
|
간단한 의료 관련 개체명 인식을 제공합니다. |
|
|
|
- 약물명 [DR] |
|
- 질병명 [DS] |
|
- 유전자/단백질 명 [GN] |
|
- 임상 증상 [CS] |
|
- 의료 기기 [MD] |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 30 | 0.0363 | 0.8056 | 0.8898 | 0.8456 | 0.9886 | |
|
| No log | 2.0 | 60 | 0.0079 | 0.9888 | 1.0 | 0.9944 | 0.9998 | |
|
| No log | 3.0 | 90 | 0.0057 | 0.9888 | 1.0 | 0.9944 | 0.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|