vladciocan88's picture
Upload README.md with huggingface_hub
aa2c803 verified
metadata
license: cc-by-nc-4.0
language:
  - ro
base_model: OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28
datasets:
  - OpenLLM-Ro/ro_sft_alpaca
  - OpenLLM-Ro/ro_sft_alpaca_gpt4
  - OpenLLM-Ro/ro_sft_dolly
  - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
  - OpenLLM-Ro/ro_sft_norobots
  - OpenLLM-Ro/ro_sft_orca
  - OpenLLM-Ro/ro_sft_camel
tags:
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28
    results:
      - task:
          type: text-generation
        dataset:
          name: RoMT-Bench
          type: RoMT-Bench
        metrics:
          - type: Score
            value: 5.15
            name: Score
          - type: Score
            value: 6.03
            name: First turn
          - type: Score
            value: 4.28
            name: Second turn
      - task:
          type: text-generation
        dataset:
          name: RoCulturaBench
          type: RoCulturaBench
        metrics:
          - type: Score
            value: 3.71
            name: Score
      - task:
          type: text-generation
        dataset:
          name: Romanian_Academic_Benchmarks
          type: Romanian_Academic_Benchmarks
        metrics:
          - type: accuracy
            value: 50.56
            name: Average accuracy
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_arc_challenge
          type: OpenLLM-Ro/ro_arc_challenge
        metrics:
          - type: accuracy
            value: 44.7
            name: Average accuracy
          - type: accuracy
            value: 41.9
            name: 0-shot
          - type: accuracy
            value: 44.3
            name: 1-shot
          - type: accuracy
            value: 44.56
            name: 3-shot
          - type: accuracy
            value: 45.5
            name: 5-shot
          - type: accuracy
            value: 46.1
            name: 10-shot
          - type: accuracy
            value: 45.84
            name: 25-shot
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_mmlu
          type: OpenLLM-Ro/ro_mmlu
        metrics:
          - type: accuracy
            value: 52.19
            name: Average accuracy
          - type: accuracy
            value: 50.85
            name: 0-shot
          - type: accuracy
            value: 51.24
            name: 1-shot
          - type: accuracy
            value: 53.3
            name: 3-shot
          - type: accuracy
            value: 53.39
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_winogrande
          type: OpenLLM-Ro/ro_winogrande
        metrics:
          - type: accuracy
            value: 67.23
            name: Average accuracy
          - type: accuracy
            value: 65.19
            name: 0-shot
          - type: accuracy
            value: 66.54
            name: 1-shot
          - type: accuracy
            value: 67.88
            name: 3-shot
          - type: accuracy
            value: 69.3
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_hellaswag
          type: OpenLLM-Ro/ro_hellaswag
        metrics:
          - type: accuracy
            value: 57.69
            name: Average accuracy
          - type: accuracy
            value: 56.12
            name: 0-shot
          - type: accuracy
            value: 57.37
            name: 1-shot
          - type: accuracy
            value: 57.92
            name: 3-shot
          - type: accuracy
            value: 58.18
            name: 5-shot
          - type: accuracy
            value: 58.85
            name: 10-shot
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_gsm8k
          type: OpenLLM-Ro/ro_gsm8k
        metrics:
          - type: accuracy
            value: 30.23
            name: Average accuracy
          - type: accuracy
            value: 29.42
            name: 1-shot
          - type: accuracy
            value: 30.02
            name: 3-shot
          - type: accuracy
            value: 31.24
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: OpenLLM-Ro/ro_truthfulqa
          type: OpenLLM-Ro/ro_truthfulqa
        metrics:
          - type: accuracy
            value: 51.34
            name: Average accuracy
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_binary
          type: LaRoSeDa_binary
        metrics:
          - type: macro-f1
            value: 97.52
            name: Average macro-f1
          - type: macro-f1
            value: 97.43
            name: 0-shot
          - type: macro-f1
            value: 96.6
            name: 1-shot
          - type: macro-f1
            value: 97.9
            name: 3-shot
          - type: macro-f1
            value: 98.13
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_multiclass
          type: LaRoSeDa_multiclass
        metrics:
          - type: macro-f1
            value: 67.41
            name: Average macro-f1
          - type: macro-f1
            value: 63.77
            name: 0-shot
          - type: macro-f1
            value: 68.91
            name: 1-shot
          - type: macro-f1
            value: 66.36
            name: 3-shot
          - type: macro-f1
            value: 70.61
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_binary_finetuned
          type: LaRoSeDa_binary_finetuned
        metrics:
          - type: macro-f1
            value: 94.15
            name: Average macro-f1
      - task:
          type: text-generation
        dataset:
          name: LaRoSeDa_multiclass_finetuned
          type: LaRoSeDa_multiclass_finetuned
        metrics:
          - type: macro-f1
            value: 87.13
            name: Average macro-f1
      - task:
          type: text-generation
        dataset:
          name: WMT_EN-RO
          type: WMT_EN-RO
        metrics:
          - type: bleu
            value: 24.01
            name: Average bleu
          - type: bleu
            value: 6.92
            name: 0-shot
          - type: bleu
            value: 29.33
            name: 1-shot
          - type: bleu
            value: 29.79
            name: 3-shot
          - type: bleu
            value: 30.02
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: WMT_RO-EN
          type: WMT_RO-EN
        metrics:
          - type: bleu
            value: 27.36
            name: Average bleu
          - type: bleu
            value: 4.5
            name: 0-shot
          - type: bleu
            value: 30.3
            name: 1-shot
          - type: bleu
            value: 36.96
            name: 3-shot
          - type: bleu
            value: 37.7
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: WMT_EN-RO_finetuned
          type: WMT_EN-RO_finetuned
        metrics:
          - type: bleu
            value: 26.53
            name: Average bleu
      - task:
          type: text-generation
        dataset:
          name: WMT_RO-EN_finetuned
          type: WMT_RO-EN_finetuned
        metrics:
          - type: bleu
            value: 40.36
            name: Average bleu
      - task:
          type: text-generation
        dataset:
          name: XQuAD
          type: XQuAD
        metrics:
          - type: exact_match
            value: 39.43
            name: Average exact_match
          - type: f1
            value: 59.5
            name: Average f1
      - task:
          type: text-generation
        dataset:
          name: XQuAD_finetuned
          type: XQuAD_finetuned
        metrics:
          - type: exact_match
            value: 44.45
            name: Average exact_match
          - type: f1
            value: 59.76
            name: Average f1
      - task:
          type: text-generation
        dataset:
          name: STS
          type: STS
        metrics:
          - type: spearman
            value: 77.2
            name: Average spearman
          - type: pearson
            value: 77.87
            name: Average pearson
      - task:
          type: text-generation
        dataset:
          name: STS_finetuned
          type: STS_finetuned
        metrics:
          - type: spearman
            value: 85.8
            name: Average spearman
          - type: pearson
            value: 86.05
            name: Average pearson
      - task:
          type: text-generation
        dataset:
          name: XQuAD_EM
          type: XQuAD_EM
        metrics:
          - type: exact_match
            value: 4.45
            name: 0-shot
          - type: exact_match
            value: 48.24
            name: 1-shot
          - type: exact_match
            value: 52.03
            name: 3-shot
          - type: exact_match
            value: 53.03
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: XQuAD_F1
          type: XQuAD_F1
        metrics:
          - type: f1
            value: 26.08
            name: 0-shot
          - type: f1
            value: 68.4
            name: 1-shot
          - type: f1
            value: 71.92
            name: 3-shot
          - type: f1
            value: 71.6
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: STS_Spearman
          type: STS_Spearman
        metrics:
          - type: spearman
            value: 77.76
            name: 1-shot
          - type: spearman
            value: 76.72
            name: 3-shot
          - type: spearman
            value: 77.12
            name: 5-shot
      - task:
          type: text-generation
        dataset:
          name: STS_Pearson
          type: STS_Pearson
        metrics:
          - type: pearson
            value: 77.83
            name: 1-shot
          - type: pearson
            value: 77.64
            name: 3-shot
          - type: pearson
            value: 78.13
            name: 5-shot

vladciocan88/RoLlama3-8b-Instruct-2024-06-28-Q8_0-GGUF

This model was converted to GGUF format from OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo vladciocan88/RoLlama3-8b-Instruct-2024-06-28-Q8_0-GGUF --hf-file rollama3-8b-instruct-2024-06-28-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo vladciocan88/RoLlama3-8b-Instruct-2024-06-28-Q8_0-GGUF --hf-file rollama3-8b-instruct-2024-06-28-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo vladciocan88/RoLlama3-8b-Instruct-2024-06-28-Q8_0-GGUF --hf-file rollama3-8b-instruct-2024-06-28-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo vladciocan88/RoLlama3-8b-Instruct-2024-06-28-Q8_0-GGUF --hf-file rollama3-8b-instruct-2024-06-28-q8_0.gguf -c 2048