metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQ
results: []
vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQ
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.4157
- Train End Logits Accuracy: 0.8542
- Train Start Logits Accuracy: 0.9111
- Validation Loss: 0.4927
- Validation End Logits Accuracy: 0.8545
- Validation Start Logits Accuracy: 0.9007
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4206, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
1.4726 | 0.6104 | 0.6723 | 0.5444 | 0.8266 | 0.8839 | 0 |
0.6639 | 0.7915 | 0.8538 | 0.4898 | 0.8462 | 0.8979 | 1 |
0.4157 | 0.8542 | 0.9111 | 0.4927 | 0.8545 | 0.9007 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3