vnktrmnb's picture
Training in progress epoch 2
fae9b25
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_keras_callback
model-index:
  - name: vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQ
    results: []

vnktrmnb/xlm-roberta-base-FT-TyDiQA_AUQ

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.4157
  • Train End Logits Accuracy: 0.8542
  • Train Start Logits Accuracy: 0.9111
  • Validation Loss: 0.4927
  • Validation End Logits Accuracy: 0.8545
  • Validation Start Logits Accuracy: 0.9007
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4206, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
1.4726 0.6104 0.6723 0.5444 0.8266 0.8839 0
0.6639 0.7915 0.8538 0.4898 0.8462 0.8979 1
0.4157 0.8542 0.9111 0.4927 0.8545 0.9007 2

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3