metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: cls-comment-phobert-base-v2-v3.2
results: []
cls-comment-phobert-base-v2-v3.2
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4780
- Accuracy: 0.9383
- F1 Score: 0.9288
- Recall: 0.9294
- Precision: 0.9285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- label_smoothing_factor: 0.05
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|---|---|---|
1.8639 | 0.8696 | 100 | 1.7088 | 0.4004 | 0.0835 | 0.1438 | 0.1795 |
1.5668 | 1.7391 | 200 | 1.3288 | 0.5800 | 0.2172 | 0.2575 | 0.2674 |
1.2197 | 2.6087 | 300 | 0.9746 | 0.7668 | 0.5366 | 0.5148 | 0.5820 |
0.9384 | 3.4783 | 400 | 0.7674 | 0.8391 | 0.6138 | 0.6267 | 0.6053 |
0.7551 | 4.3478 | 500 | 0.6780 | 0.8527 | 0.6284 | 0.6454 | 0.6147 |
0.6636 | 5.2174 | 600 | 0.6152 | 0.8684 | 0.6833 | 0.6785 | 0.7626 |
0.5767 | 6.0870 | 700 | 0.5487 | 0.8929 | 0.7884 | 0.7698 | 0.8968 |
0.5059 | 6.9565 | 800 | 0.5262 | 0.8986 | 0.8665 | 0.8534 | 0.8880 |
0.4512 | 7.8261 | 900 | 0.4882 | 0.9195 | 0.9002 | 0.9082 | 0.8928 |
0.4098 | 8.6957 | 1000 | 0.4828 | 0.9212 | 0.9111 | 0.9061 | 0.9183 |
0.3916 | 9.5652 | 1100 | 0.4685 | 0.9280 | 0.9193 | 0.9140 | 0.9254 |
0.373 | 10.4348 | 1200 | 0.4756 | 0.9239 | 0.9145 | 0.9210 | 0.9100 |
0.3592 | 11.3043 | 1300 | 0.4597 | 0.9318 | 0.9230 | 0.9203 | 0.9263 |
0.3377 | 12.1739 | 1400 | 0.4692 | 0.9304 | 0.9181 | 0.9198 | 0.9175 |
0.3299 | 13.0435 | 1500 | 0.4672 | 0.9329 | 0.9244 | 0.9216 | 0.9292 |
0.3198 | 13.9130 | 1600 | 0.4619 | 0.9331 | 0.9241 | 0.9225 | 0.9264 |
0.3121 | 14.7826 | 1700 | 0.4672 | 0.9331 | 0.9243 | 0.9245 | 0.9249 |
0.3053 | 15.6522 | 1800 | 0.4664 | 0.9345 | 0.9216 | 0.9272 | 0.9167 |
0.3058 | 16.5217 | 1900 | 0.4655 | 0.9331 | 0.9229 | 0.9221 | 0.9240 |
0.2976 | 17.3913 | 2000 | 0.4619 | 0.9356 | 0.9259 | 0.9221 | 0.9299 |
0.2975 | 18.2609 | 2100 | 0.4663 | 0.9342 | 0.9255 | 0.9248 | 0.9267 |
0.2872 | 19.1304 | 2200 | 0.4737 | 0.9345 | 0.9237 | 0.9194 | 0.9285 |
0.2879 | 20.0 | 2300 | 0.4799 | 0.9318 | 0.9201 | 0.9295 | 0.9116 |
0.2848 | 20.8696 | 2400 | 0.4843 | 0.9326 | 0.9194 | 0.9309 | 0.9092 |
0.2808 | 21.7391 | 2500 | 0.4839 | 0.9326 | 0.9243 | 0.9237 | 0.9259 |
0.2798 | 22.6087 | 2600 | 0.4840 | 0.9342 | 0.9240 | 0.9289 | 0.9197 |
0.2797 | 23.4783 | 2700 | 0.4770 | 0.9334 | 0.9223 | 0.9246 | 0.9203 |
0.2754 | 24.3478 | 2800 | 0.4863 | 0.9318 | 0.9225 | 0.9252 | 0.9212 |
0.2752 | 25.2174 | 2900 | 0.4879 | 0.9326 | 0.9243 | 0.9259 | 0.9238 |
0.2718 | 26.0870 | 3000 | 0.4788 | 0.9361 | 0.9270 | 0.9244 | 0.9301 |
0.2712 | 26.9565 | 3100 | 0.4766 | 0.9356 | 0.9253 | 0.9237 | 0.9273 |
0.2714 | 27.8261 | 3200 | 0.4780 | 0.9383 | 0.9288 | 0.9294 | 0.9285 |
0.2697 | 28.6957 | 3300 | 0.4857 | 0.9367 | 0.9263 | 0.9286 | 0.9243 |
0.2674 | 29.5652 | 3400 | 0.4876 | 0.9348 | 0.9235 | 0.9304 | 0.9174 |
0.2681 | 30.4348 | 3500 | 0.4869 | 0.9361 | 0.9262 | 0.9348 | 0.9184 |
0.2685 | 31.3043 | 3600 | 0.4931 | 0.9339 | 0.9241 | 0.9279 | 0.9212 |
0.2665 | 32.1739 | 3700 | 0.4851 | 0.9339 | 0.9234 | 0.9262 | 0.9211 |
0.2703 | 33.0435 | 3800 | 0.4864 | 0.9367 | 0.9263 | 0.9304 | 0.9226 |
0.2661 | 33.9130 | 3900 | 0.4849 | 0.9364 | 0.9271 | 0.9319 | 0.9227 |
0.2695 | 34.7826 | 4000 | 0.4863 | 0.9361 | 0.9269 | 0.9320 | 0.9223 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1