ConvnextV2-tiny / README.md
vuongnhathien's picture
ok
b54e89f verified
---
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ConvnextV2-base
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: vuongnhathien/30VNFoods
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9192460317460317
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ConvnextV2-base
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on the vuongnhathien/30VNFoods dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4650
- Accuracy: 0.9192
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5453 | 1.0 | 550 | 0.5385 | 0.8465 |
| 0.3201 | 2.0 | 1100 | 0.5494 | 0.8465 |
| 0.1818 | 3.0 | 1650 | 0.4973 | 0.8732 |
| 0.0974 | 4.0 | 2200 | 0.5644 | 0.8652 |
| 0.059 | 5.0 | 2750 | 0.5624 | 0.8891 |
| 0.0371 | 6.0 | 3300 | 0.6428 | 0.8755 |
| 0.0118 | 7.0 | 3850 | 0.5426 | 0.9026 |
| 0.0169 | 8.0 | 4400 | 0.4927 | 0.9161 |
| 0.0103 | 9.0 | 4950 | 0.5011 | 0.9105 |
| 0.0017 | 10.0 | 5500 | 0.4820 | 0.9165 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2