|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-nano-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnext-nano-new-1e-4 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9333333333333333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-nano-new-1e-4 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2467 |
|
- Accuracy: 0.9333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.8703 | 1.0 | 550 | 0.5359 | 0.8473 | |
|
| 0.6685 | 2.0 | 1100 | 0.4169 | 0.8855 | |
|
| 0.5564 | 3.0 | 1650 | 0.3499 | 0.9042 | |
|
| 0.4515 | 4.0 | 2200 | 0.3165 | 0.9141 | |
|
| 0.442 | 5.0 | 2750 | 0.3228 | 0.9082 | |
|
| 0.3799 | 6.0 | 3300 | 0.3089 | 0.9157 | |
|
| 0.3311 | 7.0 | 3850 | 0.2746 | 0.9252 | |
|
| 0.2726 | 8.0 | 4400 | 0.2689 | 0.9249 | |
|
| 0.2711 | 9.0 | 4950 | 0.2651 | 0.9276 | |
|
| 0.2758 | 10.0 | 5500 | 0.2618 | 0.9308 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|