|
--- |
|
license: mit |
|
base_model: flax-community/indonesian-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
language: |
|
- ind |
|
model-index: |
|
- name: indonesian-roberta-base-nerp-tagger |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: nerp |
|
split: test |
|
args: nerp |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8102477477477478 |
|
- name: Recall |
|
type: recall |
|
value: 0.8107042253521127 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8104759222754154 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9615076182838813 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indonesian-roberta-base-nerp-tagger |
|
|
|
This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1180 |
|
- Precision: 0.8102 |
|
- Recall: 0.8107 |
|
- F1: 0.8105 |
|
- Accuracy: 0.9615 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 420 | 0.1419 | 0.7491 | 0.8034 | 0.7753 | 0.9551 | |
|
| 0.2261 | 2.0 | 840 | 0.1317 | 0.7889 | 0.7983 | 0.7936 | 0.9569 | |
|
| 0.1081 | 3.0 | 1260 | 0.1430 | 0.7587 | 0.8300 | 0.7927 | 0.9546 | |
|
| 0.0777 | 4.0 | 1680 | 0.1459 | 0.7848 | 0.8266 | 0.8052 | 0.9577 | |
|
| 0.0563 | 5.0 | 2100 | 0.1525 | 0.7923 | 0.8125 | 0.8022 | 0.9579 | |
|
| 0.0441 | 6.0 | 2520 | 0.1552 | 0.7986 | 0.8176 | 0.8080 | 0.9584 | |
|
| 0.0441 | 7.0 | 2940 | 0.1692 | 0.7910 | 0.8232 | 0.8068 | 0.9584 | |
|
| 0.0387 | 8.0 | 3360 | 0.1677 | 0.7894 | 0.8306 | 0.8095 | 0.9588 | |
|
| 0.032 | 9.0 | 3780 | 0.1784 | 0.7939 | 0.8249 | 0.8091 | 0.9586 | |
|
| 0.0284 | 10.0 | 4200 | 0.1817 | 0.7950 | 0.8261 | 0.8102 | 0.9588 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|