xlm-roberta-base-twitter-indonesia-sarcastic
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4359
- Accuracy: 0.8513
- F1: 0.7386
- Precision: 0.6570
- Recall: 0.8433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.5641 |
1.0 |
59 |
0.5260 |
0.75 |
0.0 |
0.0 |
0.0 |
0.5317 |
2.0 |
118 |
0.5030 |
0.75 |
0.0 |
0.0 |
0.0 |
0.4995 |
3.0 |
177 |
0.4656 |
0.75 |
0.0 |
0.0 |
0.0 |
0.4599 |
4.0 |
236 |
0.4503 |
0.7687 |
0.6026 |
0.5281 |
0.7015 |
0.4082 |
5.0 |
295 |
0.3785 |
0.8470 |
0.6435 |
0.7708 |
0.5522 |
0.3274 |
6.0 |
354 |
0.3605 |
0.8619 |
0.6992 |
0.7679 |
0.6418 |
0.2621 |
7.0 |
413 |
0.3765 |
0.8619 |
0.6838 |
0.8 |
0.5970 |
0.2332 |
8.0 |
472 |
0.3408 |
0.8769 |
0.7591 |
0.7429 |
0.7761 |
0.1579 |
9.0 |
531 |
0.4382 |
0.8731 |
0.7213 |
0.8 |
0.6567 |
0.1467 |
10.0 |
590 |
0.3855 |
0.8806 |
0.7895 |
0.7059 |
0.8955 |
0.098 |
11.0 |
649 |
0.4693 |
0.8806 |
0.7500 |
0.7869 |
0.7164 |
0.0929 |
12.0 |
708 |
0.6206 |
0.8806 |
0.7333 |
0.8302 |
0.6567 |
0.0555 |
13.0 |
767 |
0.7134 |
0.8843 |
0.7634 |
0.7812 |
0.7463 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0