xlm-roberta-large-reddit-indonesia-sarcastic
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4768
- Accuracy: 0.8120
- F1: 0.6274
- Precision: 0.6217
- Recall: 0.6331
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.5177 |
1.0 |
309 |
0.4619 |
0.7867 |
0.4801 |
0.6150 |
0.3938 |
0.4158 |
2.0 |
618 |
0.4048 |
0.8143 |
0.5705 |
0.6770 |
0.4929 |
0.3535 |
3.0 |
927 |
0.4726 |
0.8051 |
0.4742 |
0.7294 |
0.3513 |
0.2983 |
4.0 |
1236 |
0.5060 |
0.8065 |
0.5806 |
0.6342 |
0.5354 |
0.2439 |
5.0 |
1545 |
0.4598 |
0.8143 |
0.6203 |
0.6350 |
0.6062 |
0.198 |
6.0 |
1854 |
0.5417 |
0.8058 |
0.5595 |
0.6468 |
0.4929 |
0.1655 |
7.0 |
2163 |
0.6252 |
0.8072 |
0.575 |
0.6411 |
0.5212 |
0.1242 |
8.0 |
2472 |
0.8431 |
0.8122 |
0.6051 |
0.6384 |
0.5751 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0