xlm-roberta-large-twitter-indonesia-sarcastic
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4322
- Accuracy: 0.8885
- F1: 0.7692
- Precision: 0.7937
- Recall: 0.7463
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.5862 |
1.0 |
59 |
0.5304 |
0.75 |
0.0 |
0.0 |
0.0 |
0.5168 |
2.0 |
118 |
0.4897 |
0.75 |
0.0 |
0.0 |
0.0 |
0.4771 |
3.0 |
177 |
0.4535 |
0.7948 |
0.3373 |
0.875 |
0.2090 |
0.4101 |
4.0 |
236 |
0.4235 |
0.7910 |
0.6585 |
0.5567 |
0.8060 |
0.3225 |
5.0 |
295 |
0.4733 |
0.8507 |
0.5918 |
0.9355 |
0.4328 |
0.2246 |
6.0 |
354 |
0.3362 |
0.8694 |
0.7009 |
0.82 |
0.6119 |
0.166 |
7.0 |
413 |
0.3672 |
0.8769 |
0.7227 |
0.8269 |
0.6418 |
0.0989 |
8.0 |
472 |
0.3835 |
0.8769 |
0.7626 |
0.7361 |
0.7910 |
0.0797 |
9.0 |
531 |
0.4379 |
0.8993 |
0.7939 |
0.8125 |
0.7761 |
0.08 |
10.0 |
590 |
0.7677 |
0.8545 |
0.7451 |
0.6628 |
0.8507 |
0.0505 |
11.0 |
649 |
0.7316 |
0.8806 |
0.7288 |
0.8431 |
0.6418 |
0.073 |
12.0 |
708 |
0.4796 |
0.9104 |
0.8182 |
0.8308 |
0.8060 |
0.05 |
13.0 |
767 |
0.8469 |
0.8694 |
0.7059 |
0.8077 |
0.6269 |
0.0583 |
14.0 |
826 |
0.7266 |
0.8918 |
0.7563 |
0.8654 |
0.6716 |
0.0275 |
15.0 |
885 |
0.8974 |
0.8918 |
0.7387 |
0.9318 |
0.6119 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0