|
--- |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
tags: |
|
- text |
|
- nlp |
|
- correction |
|
--- |
|
|
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 492513457 |
|
- CO2 Emissions (in grams): 5.527544460835904 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.07609463483095169 |
|
- Accuracy: 0.9735624586913417 |
|
- Macro F1: 0.9736173135739408 |
|
- Micro F1: 0.9735624586913417 |
|
- Weighted F1: 0.9736173135739408 |
|
- Macro Precision: 0.9737771415197378 |
|
- Micro Precision: 0.9735624586913417 |
|
- Weighted Precision: 0.9737771415197378 |
|
- Macro Recall: 0.9735624586913417 |
|
- Micro Recall: 0.9735624586913417 |
|
- Weighted Recall: 0.9735624586913417 |
|
|
|
|
|
## Usage |
|
|
|
You can use CURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Is this text really worth it?"}' https://api-inference.huggingface.co/models/wajidlinux99/gibberish-text-detector |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) |
|
|
|
inputs = tokenizer("Is this text really worth it?", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |
|
|
|
# Original Repository |
|
|
|
***madhurjindal/autonlp-Gibberish-Detector-492513457 |