|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2_three_classes_osd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2_three_classes_osd |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9518 |
|
- Accuracy: 0.8502 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.3576 | 1.0 | 3610 | 0.8598 | 0.7761 | |
|
| 0.296 | 2.0 | 7220 | 0.6544 | 0.8245 | |
|
| 0.2625 | 3.0 | 10830 | 0.6989 | 0.8249 | |
|
| 0.2893 | 4.0 | 14441 | 0.7386 | 0.8329 | |
|
| 0.2469 | 5.0 | 18051 | 0.8016 | 0.8433 | |
|
| 0.2201 | 6.0 | 21661 | 0.7419 | 0.8444 | |
|
| 0.2084 | 7.0 | 25271 | 0.8639 | 0.8449 | |
|
| 0.2034 | 8.0 | 28882 | 0.8847 | 0.8499 | |
|
| 0.1774 | 9.0 | 32492 | 0.9076 | 0.8443 | |
|
| 0.1636 | 10.0 | 36102 | 0.9518 | 0.8502 | |
|
| 0.1418 | 11.0 | 39712 | 1.0567 | 0.8469 | |
|
| 0.1462 | 12.0 | 43323 | 1.0724 | 0.8449 | |
|
| 0.1201 | 13.0 | 46933 | 1.0731 | 0.8448 | |
|
| 0.1249 | 14.0 | 50543 | 1.1191 | 0.8440 | |
|
| 0.1028 | 15.0 | 54153 | 1.0599 | 0.8486 | |
|
| 0.1075 | 16.0 | 57764 | 1.1090 | 0.8465 | |
|
| 0.1246 | 17.0 | 61374 | 1.1029 | 0.8497 | |
|
| 0.088 | 18.0 | 64984 | 1.1654 | 0.8457 | |
|
| 0.0875 | 19.0 | 68594 | 1.1944 | 0.8476 | |
|
| 0.0695 | 20.0 | 72200 | 1.1755 | 0.8486 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|