|
--- |
|
library_name: transformers.js |
|
tags: |
|
- vision |
|
- background-removal |
|
- portrait-matting |
|
license: apache-2.0 |
|
pipeline_tag: image-segmentation |
|
--- |
|
|
|
# Model Source |
|
|
|
https://huggingface.co/onnx-community/modnet-webnn/ |
|
|
|
# MODNet: Trimap-Free Portrait Matting in Real Time |
|
|
|
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/KdG3M8sltgiX8hOCNn8DT.gif) |
|
|
|
For more information, check out the official [repository](https://github.com/ZHKKKe/MODNet) and example [colab](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing). |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
You can then use the model for portrait matting, as follows: |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; |
|
|
|
// Load model and processor |
|
const model = await AutoModel.from_pretrained('Xenova/modnet', { quantized: false }); |
|
const processor = await AutoProcessor.from_pretrained('Xenova/modnet'); |
|
|
|
// Load image from URL |
|
const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024'; |
|
const image = await RawImage.fromURL(url); |
|
|
|
// Pre-process image |
|
const { pixel_values } = await processor(image); |
|
|
|
// Predict alpha matte |
|
const { output } = await model({ input: pixel_values }); |
|
|
|
// Save output mask |
|
const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height); |
|
mask.save('mask.png'); |
|
``` |
|
|
|
| Input image | Output mask | |
|
|--------|--------| |
|
| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/mhmDJgp5GgnbvQnUc2SVI.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/H1VBX6dS-xTpg14cl1Zxx.png) | |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |