Edit model card

Traditional Chinese Llama2

Thanks for these references:

Resources

Online Demo

Notice

the repois model adpater if you want to use the merged checkpoint(adapter+original model) repo: https://huggingface.co/weiren119/traditional_chinese_qlora_llama2_merged

Use which pretrained model

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0

Usage

Installation dependencies

$pip install transformers torch peft

Run the inference

import transformers
import torch
from transformers import AutoTokenizer, TextStreamer
from peft import AutoPeftModelForCausalLM

# Use the same tokenizer from the source model
original_model_path="NousResearch/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(original_model_path, use_fast=False)

# Load qlora fine-tuned model, you can replace this with your own model
qlora_model_path = "weiren119/traditional_chinese_qlora_llama2"

model = AutoPeftModelForCausalLM.from_pretrained(
        qlora_model_path,
        load_in_4bit=qlora_model_path.endswith("4bit"),
        torch_dtype=torch.float16,
        device_map='auto'
    )

system_prompt = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

            If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""




def get_prompt(message: str, chat_history: list[tuple[str, str]]) -> str:
    texts = [f'[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
    for user_input, response in chat_history:
        texts.append(f'{user_input.strip()} [/INST] {response.strip()} </s><s> [INST] ')
    texts.append(f'{message.strip()} [/INST]')
    return ''.join(texts)


print ("="*100)
print ("-"*80)
print ("Have a try!")

s = ''
chat_history = []
while True:
    s = input("User: ")
    if s != '':
        prompt = get_prompt(s, chat_history)
        print ('Answer:')
        tokens = tokenizer(prompt, return_tensors='pt').input_ids
        #generate_ids = model.generate(tokens.cuda(), max_new_tokens=4096, streamer=streamer)
        generate_ids = model.generate(input_ids=tokens.cuda(), max_new_tokens=4096, streamer=streamer)
        output = tokenizer.decode(generate_ids[0, len(tokens[0]):-1]).strip()
        chat_history.append([s, output])
        print ('-'*80)
Downloads last month
54
Inference API
Unable to determine this model’s pipeline type. Check the docs .