See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/small-llama-testing
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- format: custom
path: argilla/databricks-dolly-15k-curated-en
type:
field_input: original-instruction
field_instruction: original-instruction
field_output: original-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/00000000-0000-0000-0000-000000000124
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: argilla/databricks-dolly-15k-curated-en
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 2
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: null
wandb_mode: online
wandb_name: 00000000-0000-0000-0000-000000000124
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 00000000-0000-0000-0000-000000000124
warmup_steps: 100
weight_decay: 0.0
xformers_attention: true
00000000-0000-0000-0000-000000000124
This model is a fine-tuned version of fxmarty/small-llama-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0047 | 1 | nan |
No log | 0.0095 | 2 | nan |
No log | 0.0142 | 3 | nan |
No log | 0.0189 | 4 | nan |
No log | 0.0237 | 5 | nan |
No log | 0.0284 | 6 | nan |
No log | 0.0331 | 7 | nan |
No log | 0.0379 | 8 | nan |
No log | 0.0426 | 9 | nan |
0.0 | 0.0473 | 10 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for willtensora/00000000-0000-0000-0000-000000000124
Base model
fxmarty/small-llama-testing