|
## WiNGPT2 |
|
|
|
[WiNGPT](https://github.com/winninghealth/WiNGPT2) 是一个基于GPT的医疗垂直领域大模型,旨在将专业的医学知识、医疗信息、数据融会贯通,为医疗行业提供智能化的医疗问答、诊断支持和医学知识等信息服务,提高诊疗效率和医疗服务质量。 |
|
|
|
## 更新日志 |
|
|
|
[2024/04/24] 更新 WiNGPT2-Llama-3-8B-Chat-AWQ,WiNGPT2-Llama-3-8B-Chat-GGUF 量化模型 |
|
|
|
[2024/04/23] 更新 WiNGPT2-Llama-3-8B-Base 和 WiNGPT2-Llama-3-8B-Chat 模型(中文增强/多语言)与测评结果 |
|
|
|
[2024/04/01] 更新 WiNEval 测评结果 |
|
|
|
[2024/03/05] 开源7B/14B-Chat-4bit模型权重: [🤗](https://huggingface.co/winninghealth/WiNGPT2-7B-Chat-AWQ)WiNGPT2-7B-Chat-4bit和[🤗](https://huggingface.co/winninghealth/WiNGPT2-14B-Chat-AWQ)WiNGPT2-14B-Chat-4bit。 |
|
|
|
[2023/12/20] 新增用户微信群二维码,有效期到12月27日,扫码进群。 |
|
|
|
[2023/12/18] 发布卫宁健康医疗模型测评方案 WiNEval-MCKQuiz的评测结果。 |
|
|
|
[2023/12/12] 开源 WiNGPT2 14B模型权重: [🤗](https://huggingface.co/winninghealth/WiNGPT2-14B-Base)WiNGPT2-14B-Base 和 [🤗](https://huggingface.co/winninghealth/WiNGPT2-14B-Chat)WiNGPT2-14B-Chat。 |
|
|
|
[2023/11/02] [34B模型平台测试](https://wingpt.winning.com.cn/) 和 [欢迎加入微信讨论群](https://github.com/winninghealth/WiNGPT2/blob/main/assets/WiNGPT_GROUP.JPG) |
|
|
|
[2023/10/13] 更新一个简单的[Chatbot示例](#部署),可以进行简单的多轮对话。 |
|
|
|
[2023/09/26] 开源 WiNGPT2 与7B模型权重: [🤗](https://huggingface.co/winninghealth/WiNGPT2-7B-Base)WiNGPT2-7B-Base 和 [🤗](https://huggingface.co/winninghealth/WiNGPT2-7B-Chat)WiNGPT2-7B-Chat。 |
|
|
|
## 如何使用 |
|
|
|
### 推理 |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "WiNGPT-Llama-3-8B-Chat" |
|
device = "cuda" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path).to(device) |
|
model = model.eval() |
|
|
|
|
|
text = 'User:WiNGPT, 你好<|end_of_text|>\n Assistant:' |
|
inputs = tokenizer.encode(text, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, repetition_penalty=1.1, max_new_tokens=1024) |
|
response = tokenizer.decode(outputs[0]) |
|
print(response) |
|
|
|
## 输出结果:你好!今天我能为你做些什么?<|end_of_text|> |
|
``` |
|
|
|
### 提示 |
|
|
|
WiNGPT-Llama-3-8B-Chat 使用了自定义的提示格式: |
|
|
|
用户角色:System/User/Assistant |
|
|
|
chat_template: |
|
|
|
```jinja2 |
|
"{% for message in messages %}{% if message['role'] == 'system' %}System:{% endif %}{% if message['role'] == 'user' %}User:{% endif %}{% if message['role'] == 'assistant' %}Assistant:{% endif %}{{ message['content'] }}<|end_of_text|>\n {% endfor %}Assistant:" |
|
``` |
|
|
|
**指令提示**示例: |
|
|
|
``` |
|
User:WiNGPT, 你好<|end_of_text|>\n Assistant: |
|
``` |
|
|
|
**多轮对话**示例: |
|
|
|
``` |
|
User:WiNGPT, 你好<|end_of_text|>\n Assistant:你好!今天我能为你做些什么?<|end_of_text|>\n User:你是谁?<|end_of_text|>\n Assistant: |
|
``` |
|
|
|
**翻译功能**示例: |
|
|
|
``` |
|
System:作为医疗领域的智能助手,WiNGPT将提供中英翻译服务。用户输入的中文或英文内容将由WiNGPT进行准确的翻译,以满足用户的语言需求。<|end_of_text|>\n User:Life is short, you know, and time is so swift; Rivers are wide, so wide, and ships sail far.<|end_of_text|>\n Assistant: |
|
``` |
|
|
|
## 模型卡 |
|
|
|
#### 训练配置与参数 |
|
|
|
| 名称 | 训练策略 | 长度 | 精度 | 学习率 | Weight_decay | Epochs | GPUs | |
|
| ----------------------- | ------------------ | ---- | ---- | ------ | ------------ | ------ | ------ | |
|
| WiNGPT2-Llama-3-8B-Base | 继续预训练 (20G) | 8192 | bf16 | 5e-5 | 0.05 | 2 | A100*8 | |
|
| WiNGPT2-Llama-3-8B-Chat | 微调/对齐 (50万条) | 8192 | bf16 | 5e-6 | 0.01 | 4 | A100*8 | |
|
|
|
| 名称 | 量化方法 | 精度 | 大小 | 用例 | |
|
| ----------------------------------- | -------- | ---- | ------- | -------------------------------------- | |
|
| WiNGPT2-Llama-3-8B-Chat-AWQ | AWQ | 4 | 5.33 | medium, balanced quality - recommended | |
|
| WiNGPT2-Llama-3-8B-Chat-Q4_K_M.gguf | Q4_K_M | 4 | 4.58 GB | medium, balanced quality | |
|
| WiNGPT2-Llama-3-8B-Chat-Q8_0.gguf | Q8_0 | 8 | 7.95 GB | minimal quality loss | |
|
|
|
#### 训练数据 |
|
|
|
预训练数据约20G,指令微调对齐数据约50万条,[详细内容](https://github.com/winninghealth/WiNGPT2?tab=readme-ov-file#%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE) 。 |
|
|
|
## 中文医疗评测 - WiNEval |
|
|
|
更新时间:2024-04-23 |
|
| | Type | MCKQuiz | MSceQA | |
|
| ----------------------------- | ---------------------- | ------- | ------ | |
|
| **WiNGPT-Llama-3-8B-Base** | Continued Pre-training | 66.3 | / | |
|
| Meta-Llama-3-8B | Pre-training | 37 | / | |
|
| | | | | |
|
| **WiNGPT-Llama-3-8B-Chat** | Finetuning/Alignment | 65.2 | 83.5 | |
|
| Meta-Llama-3-8B-Instruct | Finetuning/Alignment | 49.8 | 76.3 | |
|
| Meta-Llama-3-70B-Instruct-AWQ | Finetuning/Alignment | 73.5 | 78.6 | |
|
| | | | | |
|
|
|
*MCKQuiz(客观题):17个科目分类13060选择题;输入问题和选项,让模型输出答案。根据标准答案判断对错,统计准确率。* |
|
|
|
*MSceQA(主观题):由细分领域场景题目构成,包含八大业务场景,17个一级分类和32个二级分类。使用人工/模型对模型的回答进行准确性、相关性、一致性、完整性、权威性评价,并参照标准答案对模型生成的答案进行评分。* |
|
|
|
[其他WiNEval评测结果](https://github.com/winninghealth/WiNGPT2?tab=readme-ov-file#2-%E5%8D%AB%E5%AE%81%E5%81%A5%E5%BA%B7%E5%8C%BB%E7%96%97%E6%A8%A1%E5%9E%8B%E6%B5%8B%E8%AF%84%E6%96%B9%E6%A1%88-winevalzero-shot) |
|
|
|
### 企业服务 |
|
|
|
[通过WiNGPT测试平台申请密钥或与我们取得联系](https://wingpt.winning.com.cn/) |
|
|
|
|
|
## 局限性与免责声明 |
|
|
|
(a) WiNGPT2 是一个专业医疗领域的大语言模型,可为一般用户提供拟人化AI医生问诊和问答功能,以及一般医学领域的知识问答。对于专业医疗人士,WiNGPT2 提供关于患者病情的诊断、用药和健康建议等方面的回答的建议仅供参考。 |
|
|
|
(b) 您应理解 WiNGPT2 仅提供信息和建议,不能替代医疗专业人士的意见、诊断或治疗建议。在使用 WiNGPT2 的信息之前,请寻求医生或其他医疗专业人员的建议,并独立评估所提供的信息。 |
|
|
|
(c) WiNGPT2 的信息可能存在错误或不准确。卫宁健康不对 WiNGPT2 的准确性、可靠性、完整性、质量、安全性、及时性、性能或适用性提供任何明示或暗示的保证。使用 WiNGPT2 所产生的结果和决策由您自行承担。第三方原因而给您造成的损害结果承担责任。 |
|
|
|
## 许可证 |
|
|
|
1. 本项目授权协议为 Apache License 2.0,模型权重需要遵守基础模型 [Llama-3-8B](https://github.com/meta-llama/llama3) 相关协议及其[许可证](https://llama.meta.com/llama3/license),详细内容参照其网站。 |
|
|
|
2. 使用本项目包括模型权重时请引用本项目:https://github.com/winninghealth/WiNGPT2 |
|
|
|
## 联系我们 |
|
|
|
网站:https://www.winning.com.cn |
|
|
|
邮箱:wair@winning.com.cn |
|
|