Model card for MedCSP_clip
Here is a demo of how to utilize the CLIP for encoding:
from open_clip import create_model_from_pretrained, get_tokenizer
import torch
from urllib.request import urlopen
from PIL import Image
# import model, processor and tokenizer
model, processor = create_model_from_pretrained('hf-hub:xcwangpsu/MedCSP_clip')
tokenizer = get_tokenizer('hf-hub:xcwangpsu/MedCSP_clip')
# encode image:
# import raw radiological image:
image = Image.open(urlopen("https://huggingface.co/xcwangpsu/MedCSP_clip/resolve/main/image_sample.jpg"))
# preprocess the image, the final tensor should have 4 dimensions (B, C, H, W)
processed_image = processor(image)
processed_image = torch.unsqueeze(processed_image, 0)
print("Input size:", processed_image.shape)
# encode to a single embedding
image_embedding = model.encode_image(processed_image)
print("Individual image embedding size:",image_embedding.shape)
# sequential encoding
seq_image_embedding = model.visual.trunk.forward_features(processed_image)
print("Sequential image embedding size:",seq_image_embedding.shape)
# encode text:
text = "Chest X-ray reveals increased lung opacity, indicating potential fluid buildup or infection."
tokens = tokenizer(text)
# encode to a single embedding
text_embedding = model.encode_text(tokens)
print("Individual text embedding size:",text_embedding.shape)
Acknowledgement
If you find any sources provided in this repo or our paper are useful, please cite our paper using this BibTex:
@inproceedings{wang2024unity,
title={Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources},
author={Wang, Xiaochen and Luo, Junyu and Wang, Jiaqi and Zhong, Yuan and Zhang, Xiaokun and Wang, Yaqing and Bhatia, Parminder and Xiao, Cao and Ma, Fenglong},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={3644--3656},
year={2024}
}
- Downloads last month
- 58
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.