xekri's picture
update model card README.md
abb9293
|
raw
history blame
3.35 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice_13_0-eo-10
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: eo
          split: validation
          args: eo
        metrics:
          - name: Wer
            type: wer
            value: 0.06575168361283507

wav2vec2-common_voice_13_0-eo-10

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Cer: 0.0119
  • Loss: 0.0454
  • Wer: 0.0658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
2.9894 0.22 1000 1.0 2.9257 1.0
0.7104 0.44 2000 0.0457 0.2129 0.2538
0.2853 0.67 3000 0.0274 0.1109 0.1583
0.2327 0.89 4000 0.0231 0.0909 0.1320
0.1917 1.11 5000 0.0206 0.0775 0.1188
0.1803 1.33 6000 0.0184 0.0698 0.1055
0.1661 1.56 7000 0.0169 0.0645 0.0961
0.1635 1.78 8000 0.0170 0.0639 0.0964
0.1555 2.0 9000 0.0156 0.0592 0.0881
0.1386 2.22 10000 0.0147 0.0559 0.0821
0.1338 2.45 11000 0.0146 0.0548 0.0831
0.1307 2.67 12000 0.0137 0.0529 0.0759
0.1297 2.89 13000 0.0134 0.0504 0.0745
0.1201 3.11 14000 0.0131 0.0499 0.0734
0.1152 3.34 15000 0.0128 0.0484 0.0712
0.1144 3.56 16000 0.0125 0.0477 0.0695
0.1179 3.78 17000 0.0122 0.0468 0.0679
0.1112 4.0 18000 0.0121 0.0468 0.0676
0.1141 4.23 19000 0.0121 0.0462 0.0668
0.1085 4.45 20000 0.0119 0.0458 0.0664
0.105 4.67 21000 0.0119 0.0456 0.0660
0.1072 4.89 22000 0.0119 0.0454 0.0658

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3