xiaoming-leza's picture
update model card README.md
cff9c11
|
raw
history blame
2.72 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-tr-demo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: tr
          split: test
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 0.3454192625880911

wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3714
  • Wer: 0.3454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.92 100 3.5988 1.0
No log 1.83 200 3.0083 0.9999
No log 2.75 300 0.8642 0.7579
No log 3.67 400 0.5713 0.6203
3.14 4.59 500 0.4795 0.5338
3.14 5.5 600 0.4441 0.4912
3.14 6.42 700 0.4241 0.4521
3.14 7.34 800 0.4326 0.4611
3.14 8.26 900 0.3913 0.4212
0.2183 9.17 1000 0.4036 0.3973
0.2183 10.09 1100 0.4035 0.3959
0.2183 11.01 1200 0.3807 0.3790
0.2183 11.93 1300 0.3750 0.3650
0.2183 12.84 1400 0.3822 0.3573
0.1011 13.76 1500 0.3747 0.3510
0.1011 14.68 1600 0.3714 0.3454

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3