|
--- |
|
license: apache-2.0 |
|
tags: |
|
- Text-to-Image |
|
- ControlNet |
|
- Diffusers |
|
- Stable Diffusion |
|
pipeline_tag: text-to-image |
|
--- |
|
|
|
# **ControlNet++: All-in-one ControlNet for image generations and editing!** |
|
![images_display](./images/masonry.webp) |
|
|
|
## Network Arichitecture |
|
![images](./images/ControlNet++.png) |
|
|
|
## Advantages about the model |
|
- Use bucket training like novelai, can generate high resolutions images of any aspect ratio |
|
- Use large amount of high quality data(over 10000000 images), the dataset covers a diversity of situation |
|
- Use re-captioned prompt like DALLE.3, use CogVLM to generate detailed description, good prompt following ability |
|
- Use many useful tricks during training. Including but not limited to date augmentation, mutiple loss, multi resolution |
|
- Use almost the same parameter compared with original ControlNet. No obvious increase in network parameter or computation. |
|
- Support 10+ control conditions, no obvious performance drop on any single condition compared with training independently |
|
- Support multi condition generation, condition fusion is learned during training. No need to set hyperparameter or design prompts. |
|
- Compatible with other opensource SDXL models, such as BluePencilXL, CounterfeitXL. Compatible with other Lora models. |
|
|
|
|
|
***We design a new architecture that can support 10+ control types in condition text-to-image generation and can generate high resolution images visually comparable with |
|
midjourney***. The network is based on the original ControlNet architecture, we propose two new modules to: 1 Extend the original ControlNet to support different image |
|
conditions using the same network parameter. 2 Support multiple conditions input without increasing computation offload, which is especially important for designers |
|
who want to edit image in detail, different conditions use the same condition encoder, without adding extra computations or parameters. We do thoroughly experiments |
|
on SDXL and achieve superior performance both in control ability and aesthetic score. We release the method and the model to the open source community to make everyone |
|
can enjoy it. |
|
|
|
Inference scripts and more details can found: https://github.com/xinsir6/ControlNetPlus/tree/main |
|
|
|
**If you find it useful, please give me a star, thank you very much** |
|
|
|
|
|
## Visual Examples |
|
### Openpose |
|
![pose0](./images/000000_pose_concat.webp) |
|
![pose1](./images/000001_pose_concat.webp) |
|
![pose2](./images/000002_pose_concat.webp) |
|
![pose3](./images/000003_pose_concat.webp) |
|
![pose4](./images/000004_pose_concat.webp) |
|
### Depth |
|
![depth0](./images/000005_depth_concat.webp) |
|
![depth1](./images/000006_depth_concat.webp) |
|
![depth2](./images/000007_depth_concat.webp) |
|
![depth3](./images/000008_depth_concat.webp) |
|
![depth4](./images/000009_depth_concat.webp) |
|
### Canny |
|
![canny0](./images/000010_canny_concat.webp) |
|
![canny1](./images/000011_canny_concat.webp) |
|
![canny2](./images/000012_canny_concat.webp) |
|
![canny3](./images/000013_canny_concat.webp) |
|
![canny4](./images/000014_canny_concat.webp) |
|
### Lineart |
|
![lineart0](./images/000015_lineart_concat.webp) |
|
![lineart1](./images/000016_lineart_concat.webp) |
|
![lineart2](./images/000017_lineart_concat.webp) |
|
![lineart3](./images/000018_lineart_concat.webp) |
|
![lineart4](./images/000019_lineart_concat.webp) |
|
### AnimeLineart |
|
![animelineart0](./images/000020_anime_lineart_concat.webp) |
|
![animelineart1](./images/000021_anime_lineart_concat.webp) |
|
![animelineart2](./images/000022_anime_lineart_concat.webp) |
|
![animelineart3](./images/000023_anime_lineart_concat.webp) |
|
![animelineart4](./images/000024_anime_lineart_concat.webp) |
|
### Mlsd |
|
![mlsd0](./images/000025_mlsd_concat.webp) |
|
![mlsd1](./images/000026_mlsd_concat.webp) |
|
![mlsd2](./images/000027_mlsd_concat.webp) |
|
![mlsd3](./images/000028_mlsd_concat.webp) |
|
![mlsd4](./images/000029_mlsd_concat.webp) |
|
### Scribble |
|
![scribble0](./images/000030_scribble_concat.webp) |
|
![scribble1](./images/000031_scribble_concat.webp) |
|
![scribble2](./images/000032_scribble_concat.webp) |
|
![scribble3](./images/000033_scribble_concat.webp) |
|
![scribble4](./images/000034_scribble_concat.webp) |
|
### Hed |
|
![hed0](./images/000035_hed_concat.webp) |
|
![hed1](./images/000036_hed_concat.webp) |
|
![hed2](./images/000037_hed_concat.webp) |
|
![hed3](./images/000038_hed_concat.webp) |
|
![hed4](./images/000039_hed_concat.webp) |
|
### Pidi(Softedge) |
|
![pidi0](./images/000040_softedge_concat.webp) |
|
![pidi1](./images/000041_softedge_concat.webp) |
|
![pidi2](./images/000042_softedge_concat.webp) |
|
![pidi3](./images/000043_softedge_concat.webp) |
|
![pidi4](./images/000044_softedge_concat.webp) |
|
### Teed |
|
![ted0](./images/000045_ted_concat.webp) |
|
![ted1](./images/000046_ted_concat.webp) |
|
![ted2](./images/000047_ted_concat.webp) |
|
![ted3](./images/000048_ted_concat.webp) |
|
![ted4](./images/000049_ted_concat.webp) |
|
### Segment |
|
![segment0](./images/000050_seg_concat.webp) |
|
![segment1](./images/000051_seg_concat.webp) |
|
![segment2](./images/000052_seg_concat.webp) |
|
![segment3](./images/000053_seg_concat.webp) |
|
![segment4](./images/000054_seg_concat.webp) |
|
### Normal |
|
![normal0](./images/000055_normal_concat.webp) |
|
![normal1](./images/000056_normal_concat.webp) |
|
![normal2](./images/000057_normal_concat.webp) |
|
![normal3](./images/000058_normal_concat.webp) |
|
![normal4](./images/000059_normal_concat.webp) |
|
|
|
## Multi Control Visual Examples |
|
### Openpose + Canny |
|
![pose_canny0](./images/000007_openpose_canny_concat.webp) |
|
![pose_canny1](./images/000008_openpose_canny_concat.webp) |
|
![pose_canny2](./images/000009_openpose_canny_concat.webp) |
|
![pose_canny3](./images/000010_openpose_canny_concat.webp) |
|
![pose_canny4](./images/000011_openpose_canny_concat.webp) |
|
![pose_canny5](./images/000012_openpose_canny_concat.webp) |
|
|
|
### Openpose + Depth |
|
![pose_depth0](./images/000013_openpose_depth_concat.webp) |
|
![pose_depth1](./images/000014_openpose_depth_concat.webp) |
|
![pose_depth2](./images/000015_openpose_depth_concat.webp) |
|
![pose_depth3](./images/000016_openpose_depth_concat.webp) |
|
![pose_depth4](./images/000017_openpose_depth_concat.webp) |
|
![pose_depth5](./images/000018_openpose_depth_concat.webp) |
|
|
|
### Openpose + Scribble |
|
![pose_scribble0](./images/000001_openpose_scribble_concat.webp) |
|
![pose_scribble1](./images/000002_openpose_scribble_concat.webp) |
|
![pose_scribble2](./images/000003_openpose_scribble_concat.webp) |
|
![pose_scribble3](./images/000004_openpose_scribble_concat.webp) |
|
![pose_scribble4](./images/000005_openpose_scribble_concat.webp) |
|
![pose_scribble5](./images/000006_openpose_scribble_concat.webp) |
|
|
|
### Openpose + Normal |
|
![pose_normal0](./images/000019_openpose_normal_concat.webp) |
|
![pose_normal1](./images/000020_openpose_normal_concat.webp) |
|
![pose_normal2](./images/000021_openpose_normal_concat.webp) |
|
![pose_normal3](./images/000022_openpose_normal_concat.webp) |
|
![pose_normal4](./images/000023_openpose_normal_concat.webp) |
|
![pose_normal5](./images/000024_openpose_normal_concat.webp) |
|
|
|
### Openpose + Segment |
|
![pose_segment0](./images/000025_openpose_sam_concat.webp) |
|
![pose_segment1](./images/000026_openpose_sam_concat.webp) |
|
![pose_segment2](./images/000027_openpose_sam_concat.webp) |
|
![pose_segment3](./images/000028_openpose_sam_concat.webp) |
|
![pose_segment4](./images/000029_openpose_sam_concat.webp) |
|
![pose_segment5](./images/000030_openpose_sam_concat.webp) |