|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-base-DIALOCONAN-WIKI-CLS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-DIALOCONAN-WIKI-CLS |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3828 |
|
- Precision: 0.7060 |
|
- Recall: 0.7086 |
|
- F1: 0.7072 |
|
- Accuracy: 0.9422 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4295 | 1.0 | 2500 | 0.5694 | 0.6816 | 0.6816 | 0.6793 | 0.9040 | |
|
| 0.3525 | 2.0 | 5000 | 0.4852 | 0.6923 | 0.6938 | 0.6928 | 0.9225 | |
|
| 0.2604 | 3.0 | 7500 | 0.4372 | 0.6993 | 0.7005 | 0.6995 | 0.9314 | |
|
| 0.1979 | 4.0 | 10000 | 0.4076 | 0.7056 | 0.7077 | 0.7065 | 0.9410 | |
|
| 0.1295 | 5.0 | 12500 | 0.3828 | 0.7060 | 0.7086 | 0.7072 | 0.9422 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|