zephyr-7b-dpo-lora
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6142
- Rewards/chosen: 0.1283
- Rewards/rejected: -0.0917
- Rewards/accuracies: 0.6786
- Rewards/margins: 0.2200
- Logps/rejected: -238.3409
- Logps/chosen: -292.4302
- Logits/rejected: -2.4335
- Logits/chosen: -2.4867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.654 | 1.0 | 121 | 0.6498 | 0.0901 | -0.0131 | 0.6786 | 0.1032 | -237.5548 | -292.8124 | -2.4392 | -2.4918 |
0.6269 | 2.0 | 242 | 0.6220 | 0.1207 | -0.0650 | 0.6746 | 0.1857 | -238.0732 | -292.5060 | -2.4357 | -2.4889 |
0.6158 | 3.0 | 363 | 0.6142 | 0.1283 | -0.0917 | 0.6786 | 0.2200 | -238.3409 | -292.4302 | -2.4335 | -2.4867 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for xz-huggingface-0/zephyr-7b-dpo-lora
Base model
mistralai/Mistral-7B-v0.1