Edit model card

zephyr-7b-dpo-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6142
  • Rewards/chosen: 0.1283
  • Rewards/rejected: -0.0917
  • Rewards/accuracies: 0.6786
  • Rewards/margins: 0.2200
  • Logps/rejected: -238.3409
  • Logps/chosen: -292.4302
  • Logits/rejected: -2.4335
  • Logits/chosen: -2.4867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.654 1.0 121 0.6498 0.0901 -0.0131 0.6786 0.1032 -237.5548 -292.8124 -2.4392 -2.4918
0.6269 2.0 242 0.6220 0.1207 -0.0650 0.6746 0.1857 -238.0732 -292.5060 -2.4357 -2.4889
0.6158 3.0 363 0.6142 0.1283 -0.0917 0.6786 0.2200 -238.3409 -292.4302 -2.4335 -2.4867

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for xz-huggingface-0/zephyr-7b-dpo-lora

Finetuned
(692)
this model