metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: bert-uncased-keyword-extractor
results: []
bert-uncased-keyword-extractor
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1247
- Precision: 0.8547
- Recall: 0.8825
- Accuracy: 0.9741
- F1: 0.8684
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
---|---|---|---|---|---|---|---|
0.165 | 1.0 | 1875 | 0.1202 | 0.7109 | 0.7766 | 0.9505 | 0.7423 |
0.1211 | 2.0 | 3750 | 0.1011 | 0.7801 | 0.8186 | 0.9621 | 0.7989 |
0.0847 | 3.0 | 5625 | 0.0945 | 0.8292 | 0.8044 | 0.9667 | 0.8166 |
0.0614 | 4.0 | 7500 | 0.0927 | 0.8409 | 0.8524 | 0.9711 | 0.8466 |
0.0442 | 5.0 | 9375 | 0.1057 | 0.8330 | 0.8738 | 0.9712 | 0.8529 |
0.0325 | 6.0 | 11250 | 0.1103 | 0.8585 | 0.8743 | 0.9738 | 0.8663 |
0.0253 | 7.0 | 13125 | 0.1204 | 0.8453 | 0.8825 | 0.9735 | 0.8635 |
0.0203 | 8.0 | 15000 | 0.1247 | 0.8547 | 0.8825 | 0.9741 | 0.8684 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1