yaygomii's picture
Model save
3766542 verified
|
raw
history blame
2.83 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_6_1
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-ta
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_6_1
          type: common_voice_6_1
          config: ta
          split: test
          args: ta
        metrics:
          - name: Wer
            type: wer
            value: 0.7094281298299846

wav2vec2-common_voice-ta

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6599
  • Wer: 0.7094

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.84 100 4.3941 1.0
No log 1.69 200 3.2005 1.0
No log 2.53 300 2.7844 1.0145
No log 3.38 400 0.8691 1.0003
4.317 4.22 500 0.6846 0.8394
4.317 5.06 600 0.6270 0.7790
4.317 5.91 700 0.5935 0.7802
4.317 6.75 800 0.5701 0.7812
4.317 7.59 900 0.5649 0.7891
0.3656 8.44 1000 0.6092 0.8178
0.3656 9.28 1100 0.6093 0.7721
0.3656 10.13 1200 0.6154 0.7287
0.3656 10.97 1300 0.6284 0.7408
0.3656 11.81 1400 0.6343 0.7143
0.1681 12.66 1500 0.6523 0.7363
0.1681 13.5 1600 0.6543 0.7139
0.1681 14.35 1700 0.6599 0.7094

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1