yaygomii's picture
End of training
3ddb29c verified
|
raw
history blame
3.02 kB
metadata
language:
  - ta
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_6_1
  - generated_from_trainer
datasets:
  - common_voice_6_1
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-ta
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_6_1 - TA
          type: common_voice_6_1
          config: ta
          split: test
          args: 'Config: ta, Training split: train+validation, Eval split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.7095686384712659

wav2vec2-common_voice-ta

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_6_1 - TA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6563
  • Wer: 0.7096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.84 100 4.3941 1.0
No log 1.69 200 3.2005 1.0
No log 2.53 300 2.7844 1.0145
No log 3.38 400 0.8691 1.0003
4.317 4.22 500 0.6846 0.8394
4.317 5.06 600 0.6270 0.7790
4.317 5.91 700 0.5935 0.7802
4.317 6.75 800 0.5701 0.7812
4.317 7.59 900 0.5649 0.7891
0.3656 8.44 1000 0.6092 0.8178
0.3656 9.28 1100 0.6093 0.7721
0.3656 10.13 1200 0.6154 0.7287
0.3656 10.97 1300 0.6284 0.7408
0.3656 11.81 1400 0.6343 0.7143
0.1681 12.66 1500 0.6523 0.7363
0.1681 13.5 1600 0.6543 0.7139
0.1681 14.35 1700 0.6599 0.7094

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1