|
--- |
|
base_model: MiMe-MeMo/MeMo-BERT-01 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: MeMo_BERT-SA_1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MeMo_BERT-SA_1 |
|
|
|
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-01](https://huggingface.co/MiMe-MeMo/MeMo-BERT-01) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7236 |
|
- F1-score: 0.5887 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1-score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 265 | 1.0173 | 0.4110 | |
|
| 0.9885 | 2.0 | 530 | 0.9694 | 0.5053 | |
|
| 0.9885 | 3.0 | 795 | 1.1486 | 0.4695 | |
|
| 0.7354 | 4.0 | 1060 | 1.1729 | 0.5363 | |
|
| 0.7354 | 5.0 | 1325 | 1.2851 | 0.5822 | |
|
| 0.4299 | 6.0 | 1590 | 1.7236 | 0.5887 | |
|
| 0.4299 | 7.0 | 1855 | 2.3852 | 0.5426 | |
|
| 0.2854 | 8.0 | 2120 | 2.7498 | 0.5503 | |
|
| 0.2854 | 9.0 | 2385 | 3.1832 | 0.5475 | |
|
| 0.1251 | 10.0 | 2650 | 3.3652 | 0.5563 | |
|
| 0.1251 | 11.0 | 2915 | 3.4598 | 0.5594 | |
|
| 0.0711 | 12.0 | 3180 | 3.5185 | 0.5499 | |
|
| 0.0711 | 13.0 | 3445 | 3.5487 | 0.5578 | |
|
| 0.0328 | 14.0 | 3710 | 3.8292 | 0.5437 | |
|
| 0.0328 | 15.0 | 3975 | 3.8419 | 0.5517 | |
|
| 0.013 | 16.0 | 4240 | 3.9292 | 0.5496 | |
|
| 0.0089 | 17.0 | 4505 | 3.9444 | 0.5684 | |
|
| 0.0089 | 18.0 | 4770 | 4.0013 | 0.5659 | |
|
| 0.0025 | 19.0 | 5035 | 4.0913 | 0.5675 | |
|
| 0.0025 | 20.0 | 5300 | 4.0899 | 0.5653 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|