MeMo_BERT-WSD-01 / README.md
yemen2016's picture
End of training
eedc268 verified
metadata
base_model: MiMe-MeMo/MeMo_BERT-01
tags:
  - generated_from_trainer
model-index:
  - name: MeMo_BERT-01
    results: []

MeMo_BERT-01

This model is a fine-tuned version of MiMe-MeMo/MeMo_BERT-01 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8264
  • F1-score: 0.4148

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.5574 0.1229
No log 2.0 122 1.4491 0.1477
No log 3.0 183 1.3661 0.2112
No log 4.0 244 1.7131 0.3356
No log 5.0 305 2.0026 0.3592
No log 6.0 366 2.8807 0.2263
No log 7.0 427 2.8357 0.3625
No log 8.0 488 3.5272 0.3150
0.7496 9.0 549 3.5185 0.3402
0.7496 10.0 610 3.8264 0.4148
0.7496 11.0 671 4.5875 0.2999
0.7496 12.0 732 4.3188 0.3392
0.7496 13.0 793 4.7118 0.3098
0.7496 14.0 854 4.5895 0.3319
0.7496 15.0 915 4.6764 0.3033
0.7496 16.0 976 4.6250 0.3319
0.01 17.0 1037 4.7393 0.3176
0.01 18.0 1098 4.7690 0.3176
0.01 19.0 1159 4.7655 0.3176
0.01 20.0 1220 4.7695 0.3176

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2