nb-bert-base_FGN / README.md
yemen2016's picture
End of training
5bce806 verified
|
raw
history blame
2.52 kB
---
license: cc-by-4.0
base_model: NbAiLab/nb-bert-base
tags:
- generated_from_trainer
model-index:
- name: nb-bert-base_FGN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nb-bert-base_FGN
This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0904
- F1-score: 0.8074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 120 | 0.6228 | 0.7307 |
| No log | 2.0 | 240 | 0.7442 | 0.7474 |
| No log | 3.0 | 360 | 0.7118 | 0.7785 |
| No log | 4.0 | 480 | 1.2081 | 0.7137 |
| 0.5388 | 5.0 | 600 | 1.1968 | 0.7628 |
| 0.5388 | 6.0 | 720 | 1.0904 | 0.8074 |
| 0.5388 | 7.0 | 840 | 1.2685 | 0.8007 |
| 0.5388 | 8.0 | 960 | 1.4070 | 0.7783 |
| 0.123 | 9.0 | 1080 | 1.6120 | 0.7608 |
| 0.123 | 10.0 | 1200 | 1.5899 | 0.7695 |
| 0.123 | 11.0 | 1320 | 1.4975 | 0.7705 |
| 0.123 | 12.0 | 1440 | 1.4624 | 0.7983 |
| 0.0475 | 13.0 | 1560 | 1.5148 | 0.7711 |
| 0.0475 | 14.0 | 1680 | 1.4680 | 0.7926 |
| 0.0475 | 15.0 | 1800 | 1.4216 | 0.8006 |
| 0.0475 | 16.0 | 1920 | 1.4962 | 0.8006 |
| 0.0201 | 17.0 | 2040 | 1.4150 | 0.7883 |
| 0.0201 | 18.0 | 2160 | 1.4259 | 0.7755 |
| 0.0201 | 19.0 | 2280 | 1.5040 | 0.7799 |
| 0.0201 | 20.0 | 2400 | 1.5045 | 0.7808 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1