xlsr_cycle1_ko / README.md
yesj1234's picture
Upload folder using huggingface_hub
569435c
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
model-index:
- name: ko-xlsr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ko-xlsr
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5156
- Cer: 0.1228
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.778 | 3.31 | 1000 | 1.2773 | 0.3050 |
| 1.1037 | 6.63 | 2000 | 0.7716 | 0.1888 |
| 0.9529 | 9.94 | 3000 | 0.6726 | 0.1659 |
| 0.8424 | 13.26 | 4000 | 0.6138 | 0.1512 |
| 0.767 | 16.57 | 5000 | 0.5885 | 0.1433 |
| 0.7201 | 19.88 | 6000 | 0.5682 | 0.1378 |
| 0.664 | 23.2 | 7000 | 0.5583 | 0.1333 |
| 0.6296 | 26.51 | 8000 | 0.5416 | 0.1298 |
| 0.6021 | 29.83 | 9000 | 0.5377 | 0.1272 |
| 0.568 | 33.14 | 10000 | 0.5241 | 0.1246 |
| 0.5519 | 36.45 | 11000 | 0.5184 | 0.1228 |
| 0.5395 | 39.77 | 12000 | 0.5156 | 0.1227 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3