|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- ./sample_speech.py |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: ko-xlsr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko-xlsr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4269 |
|
- Cer: 0.1119 |
|
- Wer: 0.3072 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 1.54 | 0.94 | 2000 | 1.0057 | 0.2617 | 0.6135 | |
|
| 1.1895 | 1.89 | 4000 | 0.7782 | 0.2040 | 0.5035 | |
|
| 1.0582 | 2.83 | 6000 | 0.6767 | 0.1826 | 0.4655 | |
|
| 0.9586 | 3.77 | 8000 | 0.6273 | 0.1690 | 0.4380 | |
|
| 0.8831 | 4.72 | 10000 | 0.5884 | 0.1552 | 0.4071 | |
|
| 0.8318 | 5.66 | 12000 | 0.5510 | 0.1469 | 0.3897 | |
|
| 0.7725 | 6.6 | 14000 | 0.5327 | 0.1407 | 0.3726 | |
|
| 0.7254 | 7.55 | 16000 | 0.5081 | 0.1416 | 0.3676 | |
|
| 0.6802 | 8.49 | 18000 | 0.4846 | 0.1313 | 0.3502 | |
|
| 0.6386 | 9.43 | 20000 | 0.4676 | 0.1241 | 0.3344 | |
|
| 0.5949 | 10.37 | 22000 | 0.4510 | 0.1185 | 0.3250 | |
|
| 0.5736 | 11.32 | 24000 | 0.4416 | 0.1161 | 0.3189 | |
|
| 0.5451 | 12.26 | 26000 | 0.4338 | 0.1143 | 0.3144 | |
|
| 0.5375 | 13.2 | 28000 | 0.4287 | 0.1126 | 0.3095 | |
|
| 0.5335 | 14.15 | 30000 | 0.4273 | 0.1122 | 0.3079 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|