metadata
base_model: ylacombe/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: w2v-bert-2.0-turkish-colab-CV6.1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.18384230415687877
w2v-bert-2.0-turkish-colab-CV6.1
This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1978
- Wer: 0.1838
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.4016 | 0.92 | 100 | 2.4338 | 1.0428 |
0.5644 | 1.83 | 200 | 0.2224 | 0.1936 |
0.1692 | 2.75 | 300 | 0.1978 | 0.1838 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0