ylacombe's picture
ylacombe HF staff
Model save
7956637
|
raw
history blame
5.06 kB
metadata
base_model: ylacombe/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-tr-demo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: tr
          split: test
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 1

wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0815
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00072018208512399
  • train_batch_size: 20
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.27 300 7.2663 1.0
10.5256 0.55 600 3.0893 1.0
10.5256 0.82 900 3.0612 1.0
2.9795 1.1 1200 2.9937 1.0
2.9564 1.37 1500 3.2424 1.0
2.9564 1.64 1800 3.2866 1.0
3.1552 1.92 2100 3.6339 1.0
3.1552 2.19 2400 3.1185 1.0
3.2079 2.47 2700 3.1832 1.0
3.1275 2.74 3000 3.3952 1.0
3.1275 3.01 3300 3.2982 1.0
3.0987 3.29 3600 3.1036 1.0
3.0987 3.56 3900 3.1223 1.0
2.9301 3.84 4200 3.1145 1.0
2.9197 4.11 4500 3.0324 1.0
2.9197 4.38 4800 2.9994 1.9599
2.9023 4.66 5100 2.9917 1.8240
2.9023 4.93 5400 2.9946 1.9589
2.9007 5.21 5700 3.1955 1.0
3.1887 5.48 6000 3.1902 1.0
3.1887 5.75 6300 3.1672 1.0
3.135 6.03 6600 3.2076 1.0
3.135 6.3 6900 3.2120 1.0
3.1482 6.58 7200 3.1832 1.0
3.1546 6.85 7500 3.1799 1.0
3.1546 7.12 7800 3.2452 1.0
3.1567 7.4 8100 3.2319 1.0
3.1567 7.67 8400 3.2228 1.0
3.1719 7.95 8700 3.2055 1.0
3.168 8.22 9000 3.2553 1.0
3.168 8.49 9300 3.1975 1.0
3.1643 8.77 9600 3.2446 1.0
3.1643 9.04 9900 3.2781 1.0
3.169 9.32 10200 3.2597 1.0
3.1789 9.59 10500 3.2586 1.0
3.1789 9.86 10800 3.2690 1.0
3.1701 10.14 11100 3.2737 1.0
3.1701 10.41 11400 3.2738 1.0
3.1698 10.68 11700 3.2595 1.0
3.1595 10.96 12000 3.2467 1.0
3.1595 11.23 12300 3.2524 1.0
3.15 11.51 12600 3.2327 1.0
3.15 11.78 12900 3.2196 1.0
3.1444 12.05 13200 3.1943 1.0
3.132 12.33 13500 3.1911 1.0
3.132 12.6 13800 3.2075 1.0
3.1153 12.88 14100 3.1938 1.0
3.1153 13.15 14400 3.1639 1.0
3.1039 13.42 14700 3.1515 1.0
3.0839 13.7 15000 3.1535 1.0
3.0839 13.97 15300 3.1307 1.0
3.0632 14.25 15600 3.1138 1.0
3.0632 14.52 15900 3.1289 1.0
3.0518 14.79 16200 3.0815 1.0

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.0